Новый метод обеспечения эффективного взаимодействия между фотонами
Исследователи из Копенгагенского университета в Дании, Instituto de Física Fundamental IFF-CSIC в Испании и Рурского университета Бохума в Германии недавно разработали стратегию, которая может помочь преодолеть проблему отсутствия фотон-фотонного взаимодействия. Их метод, представленный в статье, опубликованной в Nature Physics, может в конечном итоге помочь в разработке более сложных квантовых устройств.
Два фотона, распространяющиеся в волноводе и взаимодействующие с одним квантовым излучателем. Фотон-фотонное взаимодействие, в результате которого возникают корреляции. Предоставлено: Ле Жанник и др.
Фотоны, частицы, представляющие собой квант света, показали большой потенциал для развития новых квантовых технологий. В частности, физики изучают возможность создания фотонных кубитов (квантовых единиц информации), которые можно передавать на большие расстояния с помощью фотонов.
Несмотря на некоторые многообещающие результаты, необходимо преодолеть несколько препятствий, прежде чем фотонные кубиты можно будет успешно реализовать в больших масштабах. Например, известно, что фотоны подвержены потерям при распространении (т. е. потере энергии, излучения или сигналов при перемещении из одной точки в другую) и не взаимодействуют друг с другом.
Исследователи из Копенгагенского университета в Дании, Instituto de Física Fundamental IFF-CSIC в Испании и Рурского университета Бохума в Германии недавно разработали стратегию, которая может помочь преодолеть одну из этих проблем, а именно отсутствие фотон-фотонного взаимодействия. Их метод, представленный в статье, опубликованной в Nature Physics, может в конечном итоге помочь в разработке более сложных квантовых устройств.
«Мы работали над детерминированным сопряжением одиночных квантовых излучателей (квантовых точек) с одиночными фотонами более 15 лет и разработали очень мощный метод, основанный на нанофотонных волноводах », — сказал Питер Лодаль, один из исследователей, проводивших исследование, рассказал Phys.org. «Обычно мы применяли эти устройства для детерминированных однофотонных источников и источников многофотонной запутанности, но другим возможным применением было бы инициирование нелинейных операций с фотонами».
Лодаль и его коллеги осуществили первую демонстрацию концепции нелинейных операций с использованием отдельных фотонов еще в 2015 году. Однако при дальнейшем исследовании этого эффекта они столкнулись с трудностями в полном понимании фундаментальной физики , лежащей в основе этого сложного, однофотонного и нелинейного взаимодействие.
«В нашей предыдущей работе мы обнаружили, что физика, управляющая нелинейным взаимодействием импульсов света, была удивительно богатой и открыла новые возможности для создания фотонных квантовых вентилей и сортировщиков фотонов», — сказал Лодаль. «Мы провели первое экспериментальное исследование нелинейных квантовых импульсов, подвергающихся нелинейному взаимодействию из-за связи с детерминистически связанным квантовым излучателем».
В своем новом эксперименте исследователи использовали эффективную и когерентную связь одиночного квантового излучателя с нанофотонным волноводом, чтобы обеспечить нелинейное квантовое взаимодействие между однофотонными волновыми пакетами. Для этого они использовали одну квантовую точку, частицу размером в нанометр, которая ведет себя как двухуровневый атом, которая была встроена в фотонно-кристаллический волновод.
«В таких системах связь является детерминированной, так что даже один фотон, запущенный в волновод, взаимодействует с квантовой точкой», — объяснил Лодаль. «Отправка импульсов, содержащих два или более фотонов, вызывает квантовые корреляции, поскольку только один фотон за раз может взаимодействовать с квантовой точкой. Управляя длительностью квантового импульса, мы можем настроить эти корреляции и взаимодействие между фотонами».
Используя свой экспериментальный метод, Лодаль и его коллеги, по сути, смогли управлять фотоном, используя второй фотон, который был опосредован их квантовым излучателем. Другими словами, они успешно реализовали нелинейное фотон-фотонное взаимодействие.
«Мы разработали метод, позволяющий фотонам эффективно взаимодействовать друг с другом посредством связи с квантовыми точками », — сказал Лодаль. «Мы думаем, что это может открыть новые направления для создания фотон-фотонных квантовых вентилей (что является сложным вентилем в фотонных квантовых вычислениях) или детерминированных устройств сортировки фотонов, которые необходимы, например, для квантовых повторителей».
Новая стратегия, представленная этой группой исследователей, может иметь важные последствия как для исследований в области квантовой физики, так и для развития квантовых технологий. Например, их метод может открыть новые возможности для разработки квантово-оптических устройств, а также позволит физикам экспериментировать с адаптированными сложными фотонными квантовыми состояниями.
«У нас есть ряд мероприятий, которые расширяют настоящую работу», — сказала Phys.org Ханна Ле Жанник, другой исследователь, участвовавший в исследовании. «На фундаментальном уровне мы пытаемся глубже понять, как на квантовые состояния света влияет путешествие через одну квантовую точку. Но мы также уже предвидим применение этого квантового взаимодействия».
В настоящее время Лодаль, Ле Жанник и их коллеги пытаются использовать нелинейное фотон-фотонное взаимодействие, реализованное в их недавнем исследовании, для моделирования колебательной динамики молекул. Этого можно было бы достичь, сопоставив колебательную динамику сложных молекул с распространением фотонов в усовершенствованных фотонных схемах.