2024-09-17

Оптически обнаруженный когерентный контроль молекулярных спинов при комнатной температуре

В статье «Оптически обнаруживаемое когерентное управление молекулярными спинами при комнатной температуре», опубликованной в журнале Physical Review Letters, учёные показывают, как можно манипулировать определенным квантовым свойством, известным как «спин» в органических молекулах, и измерять его с помощью видимого света, и все это при комнатной температуре. Были использованы лазеры для выравнивания спинов электронов в молекулах, которые можно рассматривать как крошечные квантово-механические магниты. При тщательно направленных импульсах микроволнового излучения, получилось управлять спиновыми состояниями в желаемые квантовые состояния. Далее, используя количество видимого света, получилось измерять состояние спинов испускаемого молекулами от второго лазерного импульса, который менялся в зависимости от квантового состояния спинов. В демонстрации доказательства принципа действия была использована органическая молекула под названием пентацен, включенная в две формы материала под названием пара-терфенил, как в кристаллах, так и в тонкой пленке. Продемонстрировано, что можно оптически обнаруживать квантовую когерентность (временную шкалу, в которой существуют квантовые состояния) молекул в течение микросекунды при комнатной температуре, что намного дольше времени, необходимого для манипулирования состояниями.

2024-09-06

Гигантское усиление нелинейных гармоник оптического пинцетного фононного лазера

Ученые совершили значительный скачок в разработке лазеров, использующих звуковые волны вместо света. Фононные лазеры обещают успехи в медицинской визуализации, глубоководных исследованиях и других областях. Результаты опубликованы в журнале eLight. Новая технология включает в себя крошечный электронный толчок, который значительно увеличивает мощность и точность звуковых волн, производимых лазером. Это открывает путь для будущих устройств, которые могли бы использовать звук для более широкого спектра приложений. Ранее фононные лазеры, изготовленные из небольших объектов, страдали от слабых и неточных звуковых волн, что ограничивало их полезность. Новый метод преодолевает эту проблему, по сути «запирая» звуковые волны в более стабильном и мощном состоянии.

2024-09-05

Наноструктуры позволяют реализовать встроенный в чип световой волновой электронный частотный смеситель

Разработан электронный смеситель частот для обнаружения сигналов, который работает за пределами 0,350 ПГц с использованием крошечных наноантенн. Эти наноантенны могут смешивать различные частоты света, позволяя анализировать сигналы, колеблющиеся на порядки быстрее, чем самые быстрые, доступные для обычной электроники. Учёные подчеркивают использование сетей наноантенн для создания широкополосного электронного оптического частотного смесителя на чипе. Этот инновационный подход позволяет точно считывать формы оптических волн, охватывающие более одной октавы полосы пропускания. Важно, что этот процесс работал с использованием коммерческого лазера под ключ, который можно купить в готовом виде, а не с помощью высоконастраиваемого лазера. Хотя оптическое смешение частот возможно с использованием нелинейных материалов, этот процесс является чисто оптическим. Кроме того, толщина материалов должна быть во много раз больше длины волны, что ограничивает размер устройства микрометрическим масштабом. Продемонстрированный авторами метод световолновой электроники использует механизм туннелирования, управляемый светом, который обеспечивает высокую нелинейность для смешивания частот и прямого электронного вывода с использованием устройств нанометрового масштаба.

2024-09-02

Хиральное квантовое нагревание и охлаждение с помощью оптически управляемого иона

Тепловые двигатели, преобразующие тепло в полезную работу, жизненно важны в современном обществе. С развитием нанотехнологий изучение квантовых тепловых двигателей (QHE) имеет решающее значение для проектирования эффективных систем и понимания квантовой термодинамики. QHE, работающие как открытые квантовые системы, обмениваются энергией с внешними термальными ваннами, что приводит к квантовым скачкам. Поэтому динамика QHE может быть полностью описана и хорошо понята только с использованием исключительных точек Лиувилля (LEP), а не традиционных гамильтоновых EP, особенно для QHE на основе кубитов. В статье, опубликованной в журнале Light: Science & Applications, группа учёных демонстрирует хиральный квантовый нагрев и охлаждение, а также перенос квантового состояния с использованием оптически управляемого иона. Работа раскрывает хиральные термодинамические свойства квантовых систем с неэрмитовой динамикой путем динамического обхода замкнутого контура без вовлечения LEP. Направление обхода замкнутого контура влияет на то, действует ли система как тепловой двигатель или холодильник. Их исследование подчеркивает роль неадиабатических переходов и процесса Ландау-Зенера-Штюкельберга (LZS) в достижении хиральной операции. Этот эксперимент впервые связывает процесс LZS для хиральности с термодинамическими эффектами, связанными с LEP.

2024-08-29

Многожильный волоконно-оптический дискриминационный датчик для измерения магнитного поля и температуры

В статье, опубликованной в журнале Light: Advanced Manufacturing, представлен сверхкомпактные многожильные волоконно-оптические (MCF) наконечники зондов для дискриминационного измерения магнитного поля и температуры. Микрокантилевер в форме чаши и микрополость, пропитанная микрожидкостью, были напечатаны на двух разных сердечниках MCF с помощью техники двухфотонной полимеризации (TPP) соответственно. Микрокантилевер был включен с железным шариком внутри наконечника в форме чаши, чтобы сделать его магнитно-чувствительным, в то время как микрополость, пропитанная микрожидкостью, обеспечила высокочувствительный элемент измерения температуры. Дискриминационное измерение двух параметров может быть реализовано с помощью матрицы коэффициентов чувствительности. Метод позволяет не только реализовать дискриминационное измерение магнитного поля и температуры с высокой чувствительностью, но и значительно уменьшить размер многопараметрического датчика.

2024-08-22

Переработка грифеля карандаша в оптический материал с использованием плазмы

Как превратить грифель карандаша в полезные оптические материалы? Ответ сводится к одному слову: плазма, электрически заряженное газообразное состояние. Учёные изучили влияние более длительной плазменной обработки свинца. Для этого они подготовили образцы грифеля карандаша и поместили их в плазменную камеру на разные периоды времени, от десяти секунд до более трех минут. После этого они измерили изменения в спектрах отражения образцов, то есть интенсивность, с которой каждый обработанный образец отражает падающий свет в зависимости от его частоты. Обнаружено, что облучение грифеля карандаша плазмой в течение длительного времени привело к появлению нового оптического материала, который вызывает интерференцию в ближнем инфракрасном и среднем инфракрасном диапазонах, которые находятся ниже области длин волн видимого света. Это было связано с большей толщиной слоя глины, обнажаемого плазменным травлением. Чтобы продемонстрировать наглядное применение своей техники, команда выгравировала буквы и цифры на поверхности пластины карандашного грифеля таким образом, что символы были видны только при использовании инфракрасной камеры.

2024-08-22

Гибкое переключение орбитального углового момента в многомодовом волокне с использованием оптического нейронного сетевого чипа

В недавнем исследовании группа ученых под руководством профессора Цзянь Вана из Университета науки и технологий Хуачжун представила гибкую систему переключения режимов на основе чипа оптической нейронной сети. Эта система способна переключаться между различными режимами OAM в многомодовом волокне, что является критической функцией для современных оптических сетей связи. Чип оптической нейронной сети обеспечивает необходимую гибкость, позволяя произвольно переключать режимы между тремя режимами OAM в волокне. Статья опубликована в журнале Light: Advanced Manufacturing. Система также оснащена усовершенствованным алгоритмом градиентного спуска, который гарантирует, что перекрестные помехи между каналами остаются ниже −18,7 дБ, тем самым сохраняя целостность передаваемых сигналов. Это было продемонстрировано экспериментально, где различные форматы модуляции успешно передавались в различных режимах.

2024-08-21

VI Международная конференция "Прикладная физика, информационные технологии и инжиниринг" (APITECH-VI 2024)

16 октября 2024 г. — 18 октября 2024 г., срок заявок: 16 октября 2024 г. Узбекистан, Бухара (издание включено в: РИНЦ, Scopus, Web of Science, eLibrary.ru, DOI). Форма участия: очно-заочная. Язык информации: Русский. Бухарский инженерно-технологический институт (Узбекистан) в партнерстве с Международным малайзийским центром культуры и коммуникации (Малайзия) проводит 16-18 октября 2024 года в г. Бухара VI Международную конференцию «Прикладная физика, информационные технологии и инжиниринг» – VI International Conference on Applied Physics, Information Technologies and Engineering (APITECH-VI 2024). Партнеры и соорганизаторы конференции: Наманганский инженерно-технологический институт и Термезский инженерно-технологический институт (Узбекистан), Ошский технологический университет (Киргизия), Карагандинский технический университет (Казахстан), Технологический университет Таджикистана (Таджикистан), Университет менеджмента и науки (Малайзия), Университет ITM в Гвалиоре (Индия), Университет Анкары (Турция), Красноярский Дом науки и техники РосСНИО (Россия). Оператором и генеральным партнером конференции является Красноярский краевой Дом науки и техники Российского Союза научных и инженерных общественных объединений. К участию приглашаются ученые и специалисты российских и зарубежных вузов, академических институтов, предприятий, проектных и исследовательских центров. Цель конференции заключается в содействии всестороннему обмену знаниями и достижениями в различных областях прикладной физики и инженерии. В рамках конференции будут рассмотрены темы, такие как физика конденсированного состояния, нанонаука и нанотехнологии, оптическая физика, квантовая электроника и фотоника. Объединив экспертов из этих областей, конференция стремится способствовать сотрудничеству и инновациям, которые могут привести к практическим приложениям и технологическим достижениям. Последний день подачи заявки: 16 октября 2024 г.

2024-08-13

Когерентная энтропия при распространении через сложные среды

Как сообщается в Advanced Photonics, исследователи из Университета Сучжоу достигли значительного прогресса в понимании того, как свет ведет себя при прохождении через сложные и флуктуирующие среды. Этот прорыв может произвести революцию в различных приложениях, начиная от оптической связи и заканчивая передовыми методами визуализации. В области оптики деформация, мерцание и дрейф световых полей, вызванные сложными средами, исторически имели ограниченное практическое применение. Команда Университета Сучжоу представила новый подход к решению этой проблемы, используя концепцию, известную как энтропия когерентности. Когерентная энтропия, мера статистического свойства света, известного как когерентность, обеспечивает глобальную характеристику световых полей, подверженных случайным флуктуациям. Традиционно характеристика когерентности света была сложной и трудно поддающейся количественной оценке. Исследовательская группа успешно применила ортогональное модальное разложение к частично когерентным пучкам, что привело к введению когерентной энтропии как надежной метрики. Исследование показало, что энтропия когерентности остается стабильной при распространении света через унитарную систему, даже при столкновении со сложными и деформированными оптическими средами. Эта согласованность предполагает, что энтропия когерентности может быть надежным индикатором поведения светового поля в неидеальных условиях.

2024-07-09

Запрещенное распространение гиперболических фононных поляритонов и его применение в ближнепольном переносе энергии

Авторы нового исследования предлагают стратегию управления распространением фононных поляритонов в материале Ван-дер-Ваальса (триоксид молибдена) с помощью подложки, так что направление распространения гиперболических фононных поляритонов может быть переориентировано на 90° для достижения запрещенного распространения. В то же время описывается роль зависящей от подложки связи фононных поляритонов в ближнепольном тепловом излучении и исследуется влияние корреляции между шириной воздушного зазора и толщиной пластины триоксида молибдена на лучистую теплопередачу. На основе вывода дисперсионного уравнения учёные теоретически устанавливают связь между направлением распространения гиперболических фононных поляритонов и диэлектрической проницаемостью подложки, которая показывает, что гиперболические фононные поляритоны вдоль осей x и y не могут распространяться, когда подложка отсутствует или действительная часть диэлектрической проницаемости подложки положительна.


PhysReal • Физическая реальность

Администрация не несет ответственности за достоверность информации, опубликованной в рекламных объявлениях. Материалы, опубликованные в блогах, отражают позиции их авторов, которые могут не совпадать с мнением редакции. Использование публикаций сайта разрешается при наличии прямой ссылки на PhysReal.
Контактный E-mail:

Telegram: https://t.me/physreal
ВКонтакте: https://vk.com/physreal
RSS (XML): Новости физики

Copyright © 2024 Development by Programilla.com