2025-11-07

Обнаружено ключевое доказательство нетрадиционной сверхпроводимости в графене с магическим углом

Физики Массачусетского технологического института сообщают о наблюдении нового ключевого доказательства нетрадиционной сверхпроводимости в скрученном под «магическим углом» трехслойном графене (MATTG) — материале, который изготавливается путем укладки трех атомарно тонких листов графена под определенным углом, или скручиванием, что приводит к экзотическим свойствам. Учёным удалось измерить сверхпроводящую щель MATTG — степень устойчивости сверхпроводящего состояния материала при заданных температурах.

2025-09-19

III Всероссийская научно-техническая конференция "Полупроводниковые материалы в современной микро- и наноэлектронике"

13 ноября 2025 г. — 14 ноября 2025 г., срок заявок: 31 октября 2025 г. Россия, Махачкала (издание включено в: РИНЦ, eLibrary). Форма участия: очно-заочная. Язык информации: русский. Последний день подачи заявки: 31 октября 2025 г. Организаторы: ФГБОУ ВО "Дагестанский государственный технический университет". Оргкомитет приглашает студентов, аспирантов и молодых исследователей, учёных, инженеров, преподавателей ВУЗов и работников промышленности принять участие в III Всероссийской научно-технической конференции "Полупрводниковые материалы в современной микро- и наноэлектронике" памяти д.ф.-м.н., профессора Билалова Билала Аруговича, которая будет проходить в Дагестанском государственном техническом университете 13-14 ноября 2025 г.

2025-05-14

В мурунскитах, где атомы расположены совершенно беспорядочно, неожиданно обнаружен магнетизм

В ходе совместного исследования особого материала учеными из Венского технического университета и институтов Хорватии, Франции, Польши, Сингапура, Швейцарии и США был обнаружен неожиданный эффект: структура совершенно беспорядочного расположения атомов создаёт магнитный порядок. Была обнаружена удивительную связь между двумя совершенно разными классами сверхпроводников — купратами и пниктидами: материал мурунскит неожиданным образом сочетает в себе свойства обоих. Основные атомы в мурунските расположены совершенно хаотично и нерегулярно, но магнитные свойства четко упорядочены даже при удивительно высоких температурах и напоминают свойства железопниктидов. Исследование опубликовано в журнале Advanced Functional Materials.

2025-05-04

Блокировка спин-долин с синхронной кристаллической симметрией при комнатной температуре в слоистом металлическом кандидате на роль альтернативного магнита

Представлено первое экспериментальное наблюдение двумерного слоистого переменного магнита при комнатной температуре, что подтверждает теоретические предсказания, сделанные профессором Лю в журнале Nature Communications в 2021 году. Результаты опубликованы в журнале Nature Physics.

2025-04-02

Генерация сверхбыстрых магнитных шагов для когерентного управления

Исследователи из Института структуры и динамики материи Макса Планка (MPSD) разработали инновационный метод изучения сверхбыстрого магнетизма в материалах. Они продемонстрировали генерацию и применение ступенчатых магнитных полей, при которых магнитное поле включается за считанные пикосекунды. Работа опубликована в журнале Nature Photonics.

2025-03-31

Скрытое сверхпроводящее состояние в NbSe₂

Обнаружен неожиданный сверхпроводящий переход в чрезвычайно тонких пленках диселенида ниобия (NbSe₂). В публикации в Nature Communications уведомляется, что когда эти пленки становятся тоньше шести атомных слоев, сверхпроводимость больше не распространяется равномерно по всему материалу, а вместо этого ограничивается его поверхностью. Это открытие бросает вызов предыдущим предположениям и может иметь важные последствия для понимания сверхпроводимости и разработки передовых квантовых технологий.

2025-03-27

Электронные ротоны, обнаруженные впервые, демонстрируют образование кристаллитов Вигнера в двумерной электронной жидкости

Учёные из Университета Ёнсе представили доказательства кристаллизации Вигнера и связанных с ней электронных ротонов. В работе, опубликованной в журнале Nature, профессор Кеун Су Ким и его команда для анализа черного фосфора, легированного щелочными металлами, использовали фотоэмиссионную спектроскопию с угловым разрешением (ARPES). Результаты выявили апериодические изменения энергии, что является отличительным признаком электронных ротонов.

2025-02-18

Фазовый переход под давлением в халькогенидах свинца вызывает одновременную отрицательную фотопроводимость и сверхпроводимость

Исследовательская группа под руководством профессора Ван Сяньлуна и доктора Ван Пэя из Хэфэйского института физических наук Китайской академии наук обнаружила одновременную отрицательную фотопроводимость (NPC) и сверхпроводимость посредством структурного перехода, вызванного давлением, в PbSe₀.₅Te₀.₅ (халькогенид свинца). Работа опубликована в журнале Advanced Materials. Было обнаружено, что переход PPC–NPC (от положительной к отрицательной фотопроводимости), вызванный давлением, возникает из-за сильного неравновесного распределения возбужденных носителей. Это происходит из-за усиленного электрон-фононного взаимодействия, возникающего в результате фототермического эффекта, который снижает концентрацию и подвижность носителей. Расчеты теории функционала плотности доказали, что резко улучшенные p–p и s–p гибридизации приводят к усилению электрон-фононного взаимодействия на уровне Ферми, облегчая переход полупроводника в сверхпроводник. Структурно-зависимая сверхпроводимость и NPC переключаются посредством электрон-фононного взаимодействия, опосредованного давлением, при освещении или охлаждении.

2025-02-11

Полностью оптическое сверхпроводящее считывание кубитов

В яростной гонке за за масштабируемыми квантовыми компьютерами группа физиков из команды профессора Йоханнеса Финка из Институте науки и технологий Австрии (ISTA) сумела преодолеть важное ограничение — добилась полностью оптического считывания сверхпроводящих кубитов, выведя технологию за пределы ее нынешних ограничений, и значительно сократила количество криогенного оборудования. Их выводы опубликованы в журнале Nature Physics.

2025-02-05

Признаки сверхпроводимости в тонких плёнках при комнатной температуре и боковом сжатии

Учёным из Стэнфорда и SLAC под руководством Гарольда Хванга, директора Стэнфордского института материаловедения и энергетических наук (SIMES) удалось стабилизировать сверхпроводимость в никелата (тонких плёнках) при комнатной температуре. Вместо того чтобы применять внешнее давление, исследователи использовали подложки — материалы, которые поддерживают тонкие пленки, но также добавили боковое сжатие, заставляя атомную структуру никелата корректироваться во время роста. Результаты опубликованы в журнале Nature.


PhysReal • Физическая реальность

Администрация не несет ответственности за достоверность информации, опубликованной в рекламных объявлениях. Материалы, опубликованные в блогах, отражают позиции их авторов, которые могут не совпадать с мнением редакции. Использование публикаций сайта разрешается при наличии прямой ссылки на PhysReal.
Контактный E-mail:

Telegram: https://t.me/physreal
ВКонтакте: https://vk.com/physreal
RSS (XML): Новости физики

Copyright © 2025 Development by Programilla.com