2025-04-02

Генерация сверхбыстрых магнитных шагов для когерентного управления

Исследователи из Института структуры и динамики материи Макса Планка (MPSD) разработали инновационный метод изучения сверхбыстрого магнетизма в материалах. Они продемонстрировали генерацию и применение ступенчатых магнитных полей, при которых магнитное поле включается за считанные пикосекунды. Работа опубликована в журнале Nature Photonics.

2025-04-02

Полностью электрическая слоистая спинтроника в альтернативных магнитных бислоях

Исследовательская группа под руководством Сингапурского университета технологий и дизайна (SUTD) представила новый метод управления спином электрона с использованием только электрического поля. Работа опубликована в Materials Horizons. Результаты демонстрируют, как новый тип магнитного материала, альтермагнитный бислой, может использовать новый механизм, называемый блокировкой спинов слоев, что позволяет осуществлять полностью электрическую манипуляцию спиновыми токами при комнатной температуре.

2025-03-04

С помощью одного кубита разработан новый способ измерения высокоскоростных флуктуаций в магнитных материалах

Работая в наномасштабе, группа ученых под руководством Национальной лаборатории Оук-Ридж Министерства энергетики открыла новый способ измерения высокоскоростных флуктуаций в магнитных материалах. В работе был использован специализированный инструмент, называемый сканирующим микроскопом центра азотной вакансии в Центре нанофазных материаловедения, пользовательском объекте DOE Office of Science в ORNL. Центр азотной вакансии — это дефект атомного масштаба в алмазе, где атом азота занимает место атома углерода, а соседний атом углерода отсутствует, создавая особую конфигурацию квантовых спиновых состояний. В микроскопе центра азотной вакансии дефект реагирует на статические и флуктуирующие магнитные поля, что позволяет ученым обнаруживать сигналы на одном спиновом уровне для изучения наномасштабных структур.

2025-02-18

Фазовый переход под давлением в халькогенидах свинца вызывает одновременную отрицательную фотопроводимость и сверхпроводимость

Исследовательская группа под руководством профессора Ван Сяньлуна и доктора Ван Пэя из Хэфэйского института физических наук Китайской академии наук обнаружила одновременную отрицательную фотопроводимость (NPC) и сверхпроводимость посредством структурного перехода, вызванного давлением, в PbSe₀.₅Te₀.₅ (халькогенид свинца). Работа опубликована в журнале Advanced Materials. Было обнаружено, что переход PPC–NPC (от положительной к отрицательной фотопроводимости), вызванный давлением, возникает из-за сильного неравновесного распределения возбужденных носителей. Это происходит из-за усиленного электрон-фононного взаимодействия, возникающего в результате фототермического эффекта, который снижает концентрацию и подвижность носителей. Расчеты теории функционала плотности доказали, что резко улучшенные p–p и s–p гибридизации приводят к усилению электрон-фононного взаимодействия на уровне Ферми, облегчая переход полупроводника в сверхпроводник. Структурно-зависимая сверхпроводимость и NPC переключаются посредством электрон-фононного взаимодействия, опосредованного давлением, при освещении или охлаждении.

2025-02-13

Электрическая манипуляция последовательности заполнения спинов в двухслойных графеновых квантовых точках

Исследовательская группа из Китайского университета науки и технологий продемонстрировала возможность электрического управления последовательностью заполнения спина в двухслойной графеновой (BLG) квантовой точке (QD). Это достижение, опубликованное в Physical Review Letters, демонстрирует потенциал управления степенью свободы спина в BLG, материале с многообещающими приложениями в квантовых вычислениях и передовой электронике.

2025-02-06

Оптико-магнитная технология пятикратного увеличения эффективности крутящего момента

Исследователи из Университета Тохоку достигли значительного прогресса в области оптомагнитных технологий, наблюдая оптомагнитный момент, примерно в пять раз более эффективный, чем в обычных магнитах. Этот прорыв, совершенный под руководством Коки Нукуи, доцента Сатоси Иихамы и профессора Сигеми Мидзуками, имеет далеко идущие последствия для развития технологий спиновой памяти и хранения данных на основе света. Оптомагнитный момент — это метод, который позволяет генерировать силу на магнитах и может быть использовано для более эффективного изменения направления магнитов с помощью света. Создав нанопленки из сплава, содержащего до 70% платины, растворенной в кобальте, было обнаружено, что уникальные релятивистские квантово-механические эффекты платины значительно усиливают магнитный момент. Исследование показало, что усиление оптико-магнитного момента объясняется орбитальным угловым моментом электронов, создаваемым циркулярно поляризованным светом, и релятивистскими квантово-механическими эффектами. Результаты исследования опубликованы в журнале Physical Review Letters.

2025-02-05

Квантовый предел магниторецепции животных

Пара физиков из Университета Крита обнаружили, что некоторые типы биологических магниторецепторов, используемых различными животными для навигации, работают на квантовом пределе или около него. В своей статье, опубликованной в журнале PRX Life, IK Kominis и E. Gkoudinakis описывают проблему магнитного восприятия у крошечных существ и их навигационные способности.

2025-01-24

Синтез полуметаллического ферромагнетика Вейля с точечной поверхностью Ферми

Фермионы Вейля возникают как коллективные квантовые возбуждения электронов в кристаллах. Предсказывается, что они будут проявлять экзотические электромагнитные свойства, привлекая интенсивный интерес во всем мире. Однако, несмотря на тщательное изучение тысяч кристаллов, большинство материалов Вейля на сегодняшний день демонстрируют электропроводность, в основном контролируемую нежелательными, тривиальными электронами, скрывающими фермионы Вейля. Наконец, удалось синтезировать материал, содержащий одну пару фермионов Вейля и не имеющий нерелевантных электронных состояний. Работа, опубликованная в журнале Nature, стала результатом четырехлетнего сотрудничества CEMS, Междисциплинарной программы теоретических и математических наук RIKEN (iTHEMS), Центра квантово-фазовой электроники (QPEC) Токийского университета, Института исследований материалов Университета Тохоку и Наньянского технологического университета в Сингапуре.

2025-01-24

Фотоиндуцированная хиральность в нехиральном кристалле

Команда учёных из Гамбурга-Оксфорда сосредоточилась на антиферро-хиральных кристаллах, типе нехиральных кристаллов, напоминающих антиферромагнитные материалы, в которых магнитные моменты анти-выравниваются в шахматном порядке, что приводит к исчезающей чистой намагниченности. Антиферро-хиральный кристалл состоит из эквивалентных количеств лево- и правосторонних подструктур в элементарной ячейке, что делает его в целом нехиральным. Исследовательская группа под руководством Андреа Каваллери из Института структуры и динамики материи Общества Макса Планка использовала терагерцовый свет для повышения этого баланса в нехиральном материале фосфате бора (BPO₄), таким образом вызывая конечную хиральность в сверхбыстром масштабе времени. Исследование группы опубликовано в журнале Science.

2025-01-14

Экспериментальная идентификация топологических дефектов в коллоидном стекле 2D

Благодаря особым методам численного анализа, применяемым для обработки экспериментальных данных видеомикроскопии, физикам удалось четко идентифицировать топологические дефекты в аморфном коллоидном стекле, созданном в лабораторных условиях путем случайной сборки магнитных коллоидных частиц. Результаты опубликованы в журнале Nature Communications. Взаимодействие между частицами тонко настраивалось внешним магнитным полем.


PhysReal • Физическая реальность

Администрация не несет ответственности за достоверность информации, опубликованной в рекламных объявлениях. Материалы, опубликованные в блогах, отражают позиции их авторов, которые могут не совпадать с мнением редакции. Использование публикаций сайта разрешается при наличии прямой ссылки на PhysReal.
Контактный E-mail:

Telegram: https://t.me/physreal
ВКонтакте: https://vk.com/physreal
RSS (XML): Новости физики

Copyright © 2025 Development by Programilla.com