2024-09-17

Оптически обнаруженный когерентный контроль молекулярных спинов при комнатной температуре

В статье «Оптически обнаруживаемое когерентное управление молекулярными спинами при комнатной температуре», опубликованной в журнале Physical Review Letters, учёные показывают, как можно манипулировать определенным квантовым свойством, известным как «спин» в органических молекулах, и измерять его с помощью видимого света, и все это при комнатной температуре. Были использованы лазеры для выравнивания спинов электронов в молекулах, которые можно рассматривать как крошечные квантово-механические магниты. При тщательно направленных импульсах микроволнового излучения, получилось управлять спиновыми состояниями в желаемые квантовые состояния. Далее, используя количество видимого света, получилось измерять состояние спинов испускаемого молекулами от второго лазерного импульса, который менялся в зависимости от квантового состояния спинов. В демонстрации доказательства принципа действия была использована органическая молекула под названием пентацен, включенная в две формы материала под названием пара-терфенил, как в кристаллах, так и в тонкой пленке. Продемонстрировано, что можно оптически обнаруживать квантовую когерентность (временную шкалу, в которой существуют квантовые состояния) молекул в течение микросекунды при комнатной температуре, что намного дольше времени, необходимого для манипулирования состояниями.

2024-09-16

Гигантский нелинейный эффект Холла в теллуре при комнатной температуре

Учёные обнаружили значительные нелинейные эффекты Холла (НЭХ) и беспроводного выпрямления при комнатной температуре в элементарном полупроводнике теллуре (Te). Исследование опубликовано в Nature Communications. Был обнаружен значительный НЭХ при комнатной температуре в тонких чешуйках Te с настраиваемыми выходами напряжения Холла, модулированными внешними напряжениями затвора. При 300 К максимальный выход второй гармоники может достигать 2,8 мВ, что на порядок выше предыдущих данных. С помощью дальнейших экспериментов и теоретического анализа получено, что наблюдаемый НЭХ в тонких чешуйках Te в первую очередь обусловлен внешним рассеянием, причем нарушение симметрии поверхности тонкой структуры чешуек играет решающую роль. Физики заменили переменный ток радиочастотными (РЧ) сигналами, реализовав беспроводное РЧ-выпрямление в тонких хлопьях Те. Они добились стабильного выпрямленного выходного напряжения в широком диапазоне частот от 0,3 до 4,5 ГГц.

2024-09-10

Спиновая текстура с настраиваемым углом закручивания в гетероструктурах Ван-дер-Ваальса WSe₂

Совместно с научными сотрудниками Карлова университета в Праге и центра CFM (CSIC-UPV/EHU) в Сан-Себастьяне группа Nanodevices CIC nanoGUNE разработала новый сложный материал с новыми свойствами в области спинтроники. Это открытие, опубликованное в журнале Nature Materials, открывает ряд новых возможностей для разработки новых, более эффективных и более совершенных электронных устройств, таких как те, которые интегрируют магнитную память в процессоры.

2024-08-26

Когерентный акустический контроль орбитальных состояний дефектов в пределе сильного воздействия

Исследователи из Корнелльского университета продемонстрировали, что акустические звуковые волны можно использовать для управления движением электрона, вращающегося вокруг дефекта решетки в алмазе. Эта технология потенциально может повысить чувствительность квантовых датчиков и использоваться в других квантовых устройствах. Работа опубликована в журнале PRX Quantum. Был построен микроскопический динамик на поверхности алмазного чипа, который работал на частоте, соответствующей электронному переходу. Используя методы, которые применяются в магнитно-резонансной томографии, был продемонстрирован когерентный контроль одного электрона внутри алмазного чипа. Учёные сделали орбитальную версию спинового резонанса: взяли те инструменты, которые мы знаем из спинового резонанса, например, когерентный контроль и осцилляции Раби, и с помощью акустического резонатора в пару гигагерц отобразили это на орбитальные состояния и увидели, что эти методы по-прежнему применимы.

2024-08-21

VI Международная конференция "Прикладная физика, информационные технологии и инжиниринг" (APITECH-VI 2024)

16 октября 2024 г. — 18 октября 2024 г., срок заявок: 16 октября 2024 г. Узбекистан, Бухара (издание включено в: РИНЦ, Scopus, Web of Science, eLibrary.ru, DOI). Форма участия: очно-заочная. Язык информации: Русский. Бухарский инженерно-технологический институт (Узбекистан) в партнерстве с Международным малайзийским центром культуры и коммуникации (Малайзия) проводит 16-18 октября 2024 года в г. Бухара VI Международную конференцию «Прикладная физика, информационные технологии и инжиниринг» – VI International Conference on Applied Physics, Information Technologies and Engineering (APITECH-VI 2024). Партнеры и соорганизаторы конференции: Наманганский инженерно-технологический институт и Термезский инженерно-технологический институт (Узбекистан), Ошский технологический университет (Киргизия), Карагандинский технический университет (Казахстан), Технологический университет Таджикистана (Таджикистан), Университет менеджмента и науки (Малайзия), Университет ITM в Гвалиоре (Индия), Университет Анкары (Турция), Красноярский Дом науки и техники РосСНИО (Россия). Оператором и генеральным партнером конференции является Красноярский краевой Дом науки и техники Российского Союза научных и инженерных общественных объединений. К участию приглашаются ученые и специалисты российских и зарубежных вузов, академических институтов, предприятий, проектных и исследовательских центров. Цель конференции заключается в содействии всестороннему обмену знаниями и достижениями в различных областях прикладной физики и инженерии. В рамках конференции будут рассмотрены темы, такие как физика конденсированного состояния, нанонаука и нанотехнологии, оптическая физика, квантовая электроника и фотоника. Объединив экспертов из этих областей, конференция стремится способствовать сотрудничеству и инновациям, которые могут привести к практическим приложениям и технологическим достижениям. Последний день подачи заявки: 16 октября 2024 г.

2024-07-23

Экспериментальное наблюдение диссипативного временного кристалла в ридберговском газе при комнатной температуре

Исследователи из Университета Цинхуа недавно наблюдали диссипативный кристалл времени в сильно взаимодействующем ридберговском газе при комнатной температуре. Их статья, опубликованная в Nature Physics, открывает новые возможности для изучения этого захватывающего состояния материи. Диссипативный кристалл времени — это фаза материи, характеризующаяся периодическими колебаниями во времени, в то время как система рассеивает энергию. В отличие от обычных кристаллов времени, которые также могут возникать в закрытых системах без потери энергии, диссипативные кристаллы времени наблюдаются в открытых системах, в которых энергия свободно втекает и вытекает. Ключевое отличие эксперимента исследователей от подобных экспериментов, проведенных в прошлом, заключается в том, что они настроили поляризацию связывающего света, что привело |e⟩ к различным ридберговским состояниям. Взаимодействия и конкуренция между несколькими ридберговскими компонентами в установке команды значительно обогащают фазовую диаграмму их системы, позволяя возникнуть диссипативной фазе временного кристалла.

2024-07-10

Генерация орбитального тока посредством динамики намагничивания

В настоящее время генерация орбитального тока (т. е. потока орбитального углового момента) остается гораздо более сложной задачей, чем генерация спинового тока. Тем не менее, подходы к успешному использованию орбитального углового момента электронов могут открыть возможность для разработки нового класса устройств, называемых орбитроникой. Исследователи из Университета Кейо и Университета Иоганна Гутенберга сообщают об успешной генерации орбитального тока из динамики намагничивания, феномене, называемом орбитальной накачкой. В их статье, опубликованной в Nature Electronics, излагается многообещающий подход, который может позволить инженерам разрабатывать новые технологии, использующие орбитальный угловой момент электронов. Орбитальная накачка по сути подразумевает генерацию орбитального тока посредством динамики намагничивания (т. е. плотности магнитных дипольных моментов, индуцируемых в магнитных материалах при их размещении вблизи магнита). Для проведения своих экспериментов учёные специально использовали двухслойную структуру из никеля и титана. Приложив магнитное поле к своей структуре, была успешно продемонстрирована орбитальная накачка.

2024-07-09

Запрещенное распространение гиперболических фононных поляритонов и его применение в ближнепольном переносе энергии

Авторы нового исследования предлагают стратегию управления распространением фононных поляритонов в материале Ван-дер-Ваальса (триоксид молибдена) с помощью подложки, так что направление распространения гиперболических фононных поляритонов может быть переориентировано на 90° для достижения запрещенного распространения. В то же время описывается роль зависящей от подложки связи фононных поляритонов в ближнепольном тепловом излучении и исследуется влияние корреляции между шириной воздушного зазора и толщиной пластины триоксида молибдена на лучистую теплопередачу. На основе вывода дисперсионного уравнения учёные теоретически устанавливают связь между направлением распространения гиперболических фононных поляритонов и диэлектрической проницаемостью подложки, которая показывает, что гиперболические фононные поляритоны вдоль осей x и y не могут распространяться, когда подложка отсутствует или действительная часть диэлектрической проницаемости подложки положительна.

2024-07-06

Визуализация магнитных полей в атомном масштабе с помощью голографического электронного микроскопа

Исследовательская группа из Японии, в которую входят ученые из Hitachi, Ltd. (TSE 6501, Hitachi), Университета Кюсю, RIKEN и HREM Research Inc. (HREM), достигла крупного прорыва в наблюдении магнитных полей в невообразимо малых масштабах. В сотрудничестве с Национальным институтом передовой промышленной науки и технологий (AIST) и Национальным институтом материаловедения (NIMS) группа использовала голографический электронный микроскоп атомного разрешения Hitachi с недавно разработанной технологией получения изображений и алгоритмами коррекции расфокусировки для визуализации магнитных полей отдельных атомных слоев в кристаллическом твердом теле. Учёные провели измерения электронной голографии на образцах Ba2FeMoO6, слоистого кристаллического материала, в котором соседние атомные слои имеют различные магнитные поля. Сравнив результаты своих экспериментов с результатами моделирования, они подтвердили, что превзошли ранее установленный рекорд, сумев наблюдать магнитные поля с беспрецедентным разрешением 0,47 нм.

2024-07-01

Рекордная подвижность электронов в новой кристаллической пленке

Физики из Массачусетского технологического института, Армейской исследовательской лаборатории и других организаций достигли рекордного уровня подвижности электронов в тонкой пленке тройного тетрадимита — класса минералов, который естественным образом встречается в глубоких гидротермальных месторождениях золота и кварца. Команда смогла оценить подвижность электронов материала, обнаружив квантовые колебания при прохождении через него электрического тока. Исследователи обнаружили особый ритм колебаний, характерный для высокой подвижности электронов — выше, чем у любых тройных тонких пленок этого класса на сегодняшний день. Результаты, опубликованные в журнале Materials Today Physics, указывают на тонкие пленки тройного тетрадимита как на многообещающий материал для будущей электроники, например, для носимых термоэлектрических устройств, которые эффективно преобразуют отходящее тепло в электричество.


PhysReal • Физическая реальность

Администрация не несет ответственности за достоверность информации, опубликованной в рекламных объявлениях. Материалы, опубликованные в блогах, отражают позиции их авторов, которые могут не совпадать с мнением редакции. Использование публикаций сайта разрешается при наличии прямой ссылки на PhysReal.
Контактный E-mail:

Telegram: https://t.me/physreal
ВКонтакте: https://vk.com/physreal
RSS (XML): Новости физики

Copyright © 2024 Development by Programilla.com