2024-09-27

Управляемые монополи орбитального углового момента в хиральных топологических полуметаллах

Благодаря сочетанию надежной теории и экспериментов на Swiss Light Source SLS в Институте Пауля Шеррера PSI, было продемонстрировано существование монополей орбитального углового момента электронов (ОАМ), вращающихся вокруг атомного ядра. Что стало предметом большого теоретического интереса, поскольку они предлагают значительные практические преимущества для развивающейся области орбитроники, потенциальной энергоэффективной альтернативы традиционной электронике. Открытие опубликовано в журнале Nature Physics. Международная исследовательская группа под руководством ученых из Института Пауля Шеррера PSI и Институтов Макса Планка в Галле и Дрездене (Германия) продемонстрировала, что хиральные топологические полуметаллы — новый класс материалов, открытый в PSI в 2019 году, — обладают свойствами, которые делают их весьма практичным выбором для генерации токов ОАМ. Для эксперимента была использована техника, известная как круговой дихроизм в угловой фотоэмиссионной спектроскопии, или CD-ARPES, использующей циркулярно поляризованные рентгеновские лучи от источника синхротронного света. Предположение заключается в том, что если вы используете циркулярно поляризованный свет, вы измеряете то, что прямо пропорционально OAM.

2024-09-22

Эффект антиферромагнитного диода в четно-слоистом MnBi₂Te₄

Исследователи из Гарвардского университета наблюдали эффект антиферромагнитного диода в четнослойном MnBi₂Te₄, антиферромагнитном материале, характеризующемся центросимметричным кристаллом, который не демонстрирует направленного разделения зарядов. Эффект может быть использован для разработки различных технологий, включая транзисторы с эффектом поля в плоскости и устройства сбора микроволновой энергии. Учёные изготовили устройства с использованием равномерного слоя MnBi₂Te₄ с двумя различными конфигурациями электродов. Некоторые из этих устройств имели электроды с стержнем Холла (продольные электроды, которые пропускают ток, и поперечные электроды, используемые для измерения эффекта Холла), в то время как другие имели радиально распределенные электроды (расположенные по кругу вокруг центральной точки). Для изучения свойств равномерно-слоистого MnBi₂Te₄ использовались пространственно-разрешенный оптический метод и методы сбора измерений генерации электрической суммарной частоты. Исследование опубликовано в журнале Nature Electronics.

2024-09-20

В сочетании с тонкой пленкой тяжелого металла и ферромагнитными монослоями графен усиливает эффект стабилизации скирмионов в спинтроники

На границе раздела графена и тяжелого металла возникает сильная спин-орбитальная связь, которая приводит к различным квантовым эффектам, включая спин-орбитальное расщепление уровней энергии (эффект Рашбы) и скос в выравнивании спинов (взаимодействие Дзялошинского-Мория). Эффект скоса спинов особенно необходим для стабилизации скирмионов, которые особенно подходят для спинтроники. В статье, опубликованной в журнале ACS Nano, испано-немецкая группа учёных показала, что эти эффекты значительно усиливаются, когда несколько монослоев ферромагнитного элемента кобальта вставляются между графеном и тяжелым металлом (в данном случае: иридием). Образцы выращивались на изолирующих подложках, что является необходимым условием для внедрения многофункциональных спинтронных устройств, использующих эти эффекты. 

2024-09-10

Спиновая текстура с настраиваемым углом закручивания в гетероструктурах Ван-дер-Ваальса WSe₂

Совместно с научными сотрудниками Карлова университета в Праге и центра CFM (CSIC-UPV/EHU) в Сан-Себастьяне группа Nanodevices CIC nanoGUNE разработала новый сложный материал с новыми свойствами в области спинтроники. Это открытие, опубликованное в журнале Nature Materials, открывает ряд новых возможностей для разработки новых, более эффективных и более совершенных электронных устройств, таких как те, которые интегрируют магнитную память в процессоры.

2024-09-02

VI Международная конференция "Прикладная физика, информационные технологии и инжиниринг" (APITECH-VI 2024)

29 октября 2024 г. — 29 октября 2024 г., срок заявок: 29 октября 2024 г. Узбекистан, Бухара (издание включено в: РИНЦ, Scopus, Web of Science, eLibrary, DOI). Форма участия: очно-заочная. Язык информации: Русский. Бухарский инженерно-технологический институт (Узбекистан) в партнерстве с Международным малайзийским центром культуры и коммуникации (Малайзия) проводит 29 октября 2024 года в г. Бухара VI Международную конференцию «Прикладная физика, информационные технологии и инжиниринг» – VI International Conference on Applied Physics, Information Technologies and Engineering (APITECH-VI 2024). Цель конференции заключается в содействии всестороннему обмену знаниями и достижениями в различных областях прикладной физики и инженерии. В рамках конференции будут рассмотрены темы, такие как физика конденсированного состояния, нанонаука и нанотехнологии, оптическая физика, квантовая электроника и фотоника. Объединив экспертов из этих областей, конференция стремится способствовать сотрудничеству и инновациям, которые могут привести к практическим приложениям и технологическим достижениям.

2024-08-26

Исследование сверхпроводимости подтверждает существование краевых сверхтоков

Если топологический материал является сверхпроводником, то и основная часть, и край являются сверхпроводящими, но ведут себя по-разному. Это удивительная ситуация, очень похожая на две соприкасающиеся лужи воды, которые не сливаются. Исследование в Nature Physics показывает, что сверхпроводящие краевые токи в топологическом материале теллуриде молибдена (MoTe2) могут выдерживать большие изменения в «клее», который удерживает сверхпроводящие электроны парами. Это важно, поскольку именно спаривание электронов заставляет электричество свободно течь в сверхпроводнике. Когда MoTe2 становится сверхпроводящим, сверхток (максимальный ток, который можно ввести, не разрушая сверхпроводимость) колеблется в магнитном поле. Краевой сверхток колеблется быстрее, чем в объеме, проявляясь как характерная модуляция объемного отклика.

2024-08-22

Переработка грифеля карандаша в оптический материал с использованием плазмы

Как превратить грифель карандаша в полезные оптические материалы? Ответ сводится к одному слову: плазма, электрически заряженное газообразное состояние. Учёные изучили влияние более длительной плазменной обработки свинца. Для этого они подготовили образцы грифеля карандаша и поместили их в плазменную камеру на разные периоды времени, от десяти секунд до более трех минут. После этого они измерили изменения в спектрах отражения образцов, то есть интенсивность, с которой каждый обработанный образец отражает падающий свет в зависимости от его частоты. Обнаружено, что облучение грифеля карандаша плазмой в течение длительного времени привело к появлению нового оптического материала, который вызывает интерференцию в ближнем инфракрасном и среднем инфракрасном диапазонах, которые находятся ниже области длин волн видимого света. Это было связано с большей толщиной слоя глины, обнажаемого плазменным травлением. Чтобы продемонстрировать наглядное применение своей техники, команда выгравировала буквы и цифры на поверхности пластины карандашного грифеля таким образом, что символы были видны только при использовании инфракрасной камеры.

2024-08-21

VI Международная конференция "Прикладная физика, информационные технологии и инжиниринг" (APITECH-VI 2024)

16 октября 2024 г. — 18 октября 2024 г., срок заявок: 16 октября 2024 г. Узбекистан, Бухара (издание включено в: РИНЦ, Scopus, Web of Science, eLibrary.ru, DOI). Форма участия: очно-заочная. Язык информации: Русский. Бухарский инженерно-технологический институт (Узбекистан) в партнерстве с Международным малайзийским центром культуры и коммуникации (Малайзия) проводит 16-18 октября 2024 года в г. Бухара VI Международную конференцию «Прикладная физика, информационные технологии и инжиниринг» – VI International Conference on Applied Physics, Information Technologies and Engineering (APITECH-VI 2024). Партнеры и соорганизаторы конференции: Наманганский инженерно-технологический институт и Термезский инженерно-технологический институт (Узбекистан), Ошский технологический университет (Киргизия), Карагандинский технический университет (Казахстан), Технологический университет Таджикистана (Таджикистан), Университет менеджмента и науки (Малайзия), Университет ITM в Гвалиоре (Индия), Университет Анкары (Турция), Красноярский Дом науки и техники РосСНИО (Россия). Оператором и генеральным партнером конференции является Красноярский краевой Дом науки и техники Российского Союза научных и инженерных общественных объединений. К участию приглашаются ученые и специалисты российских и зарубежных вузов, академических институтов, предприятий, проектных и исследовательских центров. Цель конференции заключается в содействии всестороннему обмену знаниями и достижениями в различных областях прикладной физики и инженерии. В рамках конференции будут рассмотрены темы, такие как физика конденсированного состояния, нанонаука и нанотехнологии, оптическая физика, квантовая электроника и фотоника. Объединив экспертов из этих областей, конференция стремится способствовать сотрудничеству и инновациям, которые могут привести к практическим приложениям и технологическим достижениям. Последний день подачи заявки: 16 октября 2024 г.

2024-07-01

Рекордная подвижность электронов в новой кристаллической пленке

Физики из Массачусетского технологического института, Армейской исследовательской лаборатории и других организаций достигли рекордного уровня подвижности электронов в тонкой пленке тройного тетрадимита — класса минералов, который естественным образом встречается в глубоких гидротермальных месторождениях золота и кварца. Команда смогла оценить подвижность электронов материала, обнаружив квантовые колебания при прохождении через него электрического тока. Исследователи обнаружили особый ритм колебаний, характерный для высокой подвижности электронов — выше, чем у любых тройных тонких пленок этого класса на сегодняшний день. Результаты, опубликованные в журнале Materials Today Physics, указывают на тонкие пленки тройного тетрадимита как на многообещающий материал для будущей электроники, например, для носимых термоэлектрических устройств, которые эффективно преобразуют отходящее тепло в электричество.

2024-06-20

Генерирующее электроэнергию устройство на основе гелевого электрета для носимых датчиков

Группа исследователей из NIMS (Национального института материаловедения), Университета Хоккайдо и Фармацевтического университета Мэйдзи разработала гелевый электрет, способный стабильно удерживать большой электростатический заряд. Чтобы создать датчик, способный воспринимать низкочастотные вибрации (например, вибрации, создаваемые движением человека) и преобразовывать их в сигналы выходного напряжения, учёные объединили этот гель с очень гибкими электродами. Полученное устройство может быть использовано в качестве портативного медицинского датчика. Исследование опубликовано в журнале Angewandte Chemie International Edition. NIMS возглавляет усилия по разработке низколетучей жидкости алкил-π при комнатной температуре, состоящей из π-сопряженного красителя и гибких, но разветвленных алкильных цепей (тип углеводородного соединения). Жидкости алкил-π демонстрируют превосходные свойства сохранения заряда, могут наноситься на другие материалы (например, посредством окраски и пропитки) и легко поддаются формованию. Разработчикам удалось создать гель алкил-π, добавив небольшое количество низкомолекулярного гелеобразователя в жидкость алкил-π. Было обнаружено, что модуль упругости этого геля в 40 миллионов раз превышает модуль упругости его жидкого аналога, и его можно упростить путем фиксации и герметизации. Гель-электрет, полученный путем зарядки этого геля, достиг 24% увеличения удержания заряда по сравнению с основным материалом.


PhysReal • Физическая реальность

Администрация не несет ответственности за достоверность информации, опубликованной в рекламных объявлениях. Материалы, опубликованные в блогах, отражают позиции их авторов, которые могут не совпадать с мнением редакции. Использование публикаций сайта разрешается при наличии прямой ссылки на PhysReal.
Контактный E-mail:

Telegram: https://t.me/physreal
ВКонтакте: https://vk.com/physreal
RSS (XML): Новости физики

Copyright © 2024 Development by Programilla.com