2026-02-11

Новые эксперименты показывают, что ядро Земли содержит количество водорода, эквивалентное объему 45 океанов

Ядро Земли состоит в основном из железа, но его плотность недостаточно высока, чтобы оно было чистым железом, а это значит, что в ядре также присутствуют более легкие элементы. В частности, предполагается, что оно является крупным резервуаром водорода. Новое исследование, опубликованное в журнале Nature Communications, подтверждает эту идею, поскольку результаты показывают, что ядро содержит количество водорода, эквивалентное 45 океанам. Эти результаты ставят под сомнение идею о том, что большая часть воды на Земле была доставлена кометами на ранних этапах эволюции планеты.

2026-02-02

Первая демонстрация структурированного эффекта Монтгомери в свободном пространстве

Исследователи из лаборатории Федерико Капассо, профессора прикладной физики имени Роберта Л. Уоллеса и старшего научного сотрудника имени Винтона Хейса в области электротехники, сообщают в журнале Optica о первой экспериментальной демонстрации малоизвестного эффекта Монтгомери, при котором когерентный луч света, казалось бы, исчезает, а затем резко перефокусируется снова и снова в свободном пространстве на идеально заданных расстояниях. Это безлинзовое, повторяющееся формирование светового рисунка может заложить основу для мощных новых инструментов во многих областях, включая микроскопию, сенсорику и квантовые вычисления.

2026-01-31

С помощью квантово-механических эффектов впервые удалось провести оптические измерения с атомным разрешением

Учёные из Регенсбурга и Бирмингема преодолели фундаментальное ограничение оптической микроскопии. С помощью квантово-механических эффектов им впервые удалось провести оптические измерения с атомным разрешением. Невероятное разрешение достигается за счет приближения острого металлического наконечника к поверхности исследуемого материала на чрезвычайно близкое расстояние — зазор меньше размера одного атома. Система освещается лазером непрерывного излучения, «сжимающим» инфракрасный свет в крошечный зазор и концентрирующим его на вершине наконечника. Такое ограничение света позволяет обойти дифракционный предел и обеспечивает пространственное разрешение порядка радиуса кривизны вершины наконечника — обычно около 10 нанометров. Результаты их работы опубликованы в журнале Nano Letters.

2026-01-22

Сверхбыстрые световые переключатели для быстрого оптического управления используют атомарно тонкие полупроводники

В поисках материала, отражательные свойства которого можно было бы изменять или "переключать" в течение нескольких фемтосекунд с помощью сильно сфокусированного лазерного луча, учёные использовали сверхтонкую серебряную "матрицу нанощелей", на поверхности которой выточили сетку параллельных канавок шириной и глубиной приблизительно 45 нанометров. Затем нанесли на поверхность этой структуры монослой полупроводникового кристалла дисульфида вольфрама толщиной всего в три атома. Таким образом была получена наноструктура, состоящая из серебра и атомарно тонкого полупроводникового слоя, которую можно превратить в сверхбыстрое переключающее зеркальное устройство, что может функционировать как оптический транзистор со скоростью переключения примерно в 10 000 раз выше, чем у электронного аналога. Работа была опубликована в журнале Nature Nanotechnology.

2026-01-20

Электрически накачиваемые сверхъяркие запутанные фотоны на чипе

Учёные из Китайского университета науки и технологий, Цзинаньского института квантовых технологий, Института полупроводников Китайской академии наук и других институтов разработали новый фотонный чип с интегрированной системой генерации запутанных фотонов, способный генерировать запутанные фотоны с помощью лазера, работающего от электрического тока. Результаты исследования опубликованы в журнале Physical Review Letters. 

2026-01-13

Первое наблюдение динамической магнитохиральной нестабильности в твердотельном материале

Исследователи из Инженерного колледжа Грейнджера при Университете Иллинойса в Урбана-Шампейн сообщили о первом наблюдении динамической магнитохиральной нестабильности в твердотельном материале. Их результаты, опубликованные в журнале Nature Physics, объединяют идеи ядерной физики и физики высоких энергий с материаловедением и физикой конденсированных сред. В работе приводится попытка объяснить, как взаимодействие между симметрией и магнетизмом может усиливать электромагнитные волны.

2026-01-05

Шаги Шапиро в сильно взаимодействующих ферми-газах

Впервые учёные наблюдали знаменитые ступени Шапиро — ступенчатый квантовый эффект — в ультрахолодных атомах. В эксперименте переменный ток был приложен к джозефсоновскому переходу, образованному атомами, охлажденными почти до абсолютного нуля и разделенными чрезвычайно тонким барьером из лазерного света. Оказалось, что атомы смогли преодолеть этот барьер коллективно и без потери энергии. Они вели себя так, как если бы, благодаря квантовому туннелированию, барьер был прозрачным. По мере протекания осциллирующего тока через переход разница химических потенциалов между двумя сторонами изменялась не плавно, а увеличивалась дискретными, равномерно расположенными ступенями, подобно подъему по квантовой лестнице. Высота каждой ступени напрямую определяется частотой приложенного тока, и эти ступенчатые разности химических потенциалов являются атомным аналогом ступеней Шапиро в обычных джозефсоновских переходах. Результаты исследования опубликованы в журнале Science.

2025-11-29

Быстрые рентгеновские импульсы позволяют в 100 раз повысить эффективность фотоионизации

Скорость имеет значение. Когда рентгеновский фотон возбуждает атом или ион, заставляя электрон ядра перейти на более высокий энергетический уровень, открывается кратковременное окно возможностей. Прежде чем электрон заполнит пустоту на более низком энергетическом уровне, всего за несколько фемтосекунд, второй фотон может быть поглощен другим электроном ядра, создавая двойное возбуждённое состояние. Используя 5000 интенсивных рентгеновских вспышек в секунду, генерируемых XFEL (европейский рентгеновский лазер на свободных электронах), международная группа ученых исследовала такие состояния с двумя дырками в сильно ионизированном криптоне, используя фотоны, которые имели почти одинаковую энергию или цвет.

2025-11-11

Негармонические двухцветные фемтосекундные лазеры достигают 1000-кратного усиления выходного белого света в H₂O

Используя негармоническое двухцветное фемтосекундное лазерное возбуждение, учёные из Института молекулярных наук (NINS, Япония) и SOKENDAI открыли новый оптический принцип, который позволяет генерировать в воде значительно более сильный свет, достигая 1000-кратного увеличения выходного сигнала широкополосного белого света по сравнению с традиционными методами. В эксперименте было использовано негармоническое двухцветное фемтосекундное лазерное возбуждение, при котором две длины волн лазера не имеют целочисленного соотношения частот. Хотя комбинации гармоник (такие как основная и вторая гармоники света) широко используются в нелинейной оптике, это первая демонстрация того, что негармоническое возбуждение в воде может открыть мощный режим взаимодействия света с веществом. Эта работа опубликована в журнале Optics Letters.

2025-09-28

Электроуправляемая лазерная генерация на двухполостном перовскитном устройстве

Ученые продемонстрировали работающий на электричестве перовскитный лазер с двумя резонаторами в конструкции, решив проблему, которая существовала в этой области более десятилетия. Прибор основан на интегрированной двухполостной архитектуре, которая разделяет функции электрооптического преобразования и оптического усиления между двумя специализированными компонентами — под действием электрических импульсов интенсивное направленное излучение перовскитного светодиода в первом микрорезонаторе поглощается монокристаллом перовскита во втором микрорезонаторе, что обеспечивает усиление света и последующую генерацию лазерного излучения.


PhysReal • Физическая реальность

Администрация не несет ответственности за достоверность информации, опубликованной в рекламных объявлениях. Материалы, опубликованные в блогах, отражают позиции их авторов, которые могут не совпадать с мнением редакции. Использование публикаций сайта разрешается при наличии прямой ссылки на PhysReal.
Контактный E-mail:

Telegram: https://t.me/physreal
ВКонтакте: https://vk.com/physreal
RSS (XML): Новости физики

Copyright © 2026 Development by Programilla.com