2024-10-15

Модификация кварк-глюонного распределения в ядрах с помощью коррелированных пар нуклонов

До сих пор существовало два параллельных описания атомных ядер: одно на основе протонов и нейтронов, которые мы можем видеть при низких энергиях, а другое, для высоких энергий, на основе кварков и глюонов. В дан6ной работе физикам удалось вывести эти два до сих пор разделенных мира вместе. Этот давний тупик был преодолен только сейчас в статье, опубликованной в журнале Physical Review Letters. Ее основными авторами являются ученые международной коллаборации nCTEQ по кварк-глюонным распределениям, в том числе из Института ядерной физики Польской академии наук (IFJ PAN) в Кракове. Результаты столкновений атомных ядер с электронами достаточно хорошо воспроизводятся с использованием моделей, предполагающих существование только нуклонов для описания низкоэнергетических столкновений и только партонов для высокоэнергетических столкновений. Однако до сих пор эти два описания не удалось объединить в целостную картину. В своей работе физики из IFJ PAN использовали данные о столкновениях высоких энергий, в том числе собранные на ускорителе БАК в лаборатории ЦЕРН в Женеве. Основная цель заключалась в изучении партонной структуры атомных ядер при высоких энергиях, которая в настоящее время описывается партонными функциями распределения. Новый подход позволил учёным определить для 18 исследованных атомных ядер функции распределения партонов в атомных ядрах, распределения партонов в коррелированных парах нуклонов и даже количество таких коррелированных пар. Результаты подтвердили наблюдение, известное из экспериментов с низкими энергиями, о том, что большинство коррелирующих пар представляют собой пары протон-нейтрон (этот результат особенно интересен для тяжелых ядер, например, золота или свинца).

2024-07-16

Терагерцовая спектроскопия динамики волны коллективной плотности заряда на атомном уровне позволяет увидеть электроны в замедленной съемке

Физики из Штутгартского университета под руководством профессора Себастьяна Лота разрабатывают квантовую микроскопию, которая впервые позволяет им регистрировать движение электронов на атомном уровне с чрезвычайно высоким пространственным и временным разрешением. Исследователи опубликовали свои выводы в Nature Physics. Ученые изучили материал, состоящий из элементов ниобия и селена, в котором один эффект можно наблюдать относительно ненарушенным образом: коллективное движение электронов в волне плотности заряда. Было изучено как одна примесь может остановить это коллективное движение. Для этого применяют к материалу чрезвычайно короткий электрический импульс, который длится всего одну пикосекунду. Волна плотности заряда прижимается к примеси и посылает нанометровые искажения в коллектив электронов, которые вызывают очень сложное движение электронов в материале на короткое время. Экспериментаторам приходится очень часто повторять эти измерения, чтобы получить значимые результаты. Исследователи смогли оптимизировать свой микроскоп таким образом, что он повторяет эксперимент 41 миллион раз в секунду и, таким образом, достигает особенно высокого качества сигнала.

2024-07-10

Генерация орбитального тока посредством динамики намагничивания

В настоящее время генерация орбитального тока (т. е. потока орбитального углового момента) остается гораздо более сложной задачей, чем генерация спинового тока. Тем не менее, подходы к успешному использованию орбитального углового момента электронов могут открыть возможность для разработки нового класса устройств, называемых орбитроникой. Исследователи из Университета Кейо и Университета Иоганна Гутенберга сообщают об успешной генерации орбитального тока из динамики намагничивания, феномене, называемом орбитальной накачкой. В их статье, опубликованной в Nature Electronics, излагается многообещающий подход, который может позволить инженерам разрабатывать новые технологии, использующие орбитальный угловой момент электронов. Орбитальная накачка по сути подразумевает генерацию орбитального тока посредством динамики намагничивания (т. е. плотности магнитных дипольных моментов, индуцируемых в магнитных материалах при их размещении вблизи магнита). Для проведения своих экспериментов учёные специально использовали двухслойную структуру из никеля и титана. Приложив магнитное поле к своей структуре, была успешно продемонстрирована орбитальная накачка.

2024-07-01

Рекордная подвижность электронов в новой кристаллической пленке

Физики из Массачусетского технологического института, Армейской исследовательской лаборатории и других организаций достигли рекордного уровня подвижности электронов в тонкой пленке тройного тетрадимита — класса минералов, который естественным образом встречается в глубоких гидротермальных месторождениях золота и кварца. Команда смогла оценить подвижность электронов материала, обнаружив квантовые колебания при прохождении через него электрического тока. Исследователи обнаружили особый ритм колебаний, характерный для высокой подвижности электронов — выше, чем у любых тройных тонких пленок этого класса на сегодняшний день. Результаты, опубликованные в журнале Materials Today Physics, указывают на тонкие пленки тройного тетрадимита как на многообещающий материал для будущей электроники, например, для носимых термоэлектрических устройств, которые эффективно преобразуют отходящее тепло в электричество.

2024-06-26

Впервые удалось однократно диагностировать ускорение электронов через лазерный кильватерный ускоритель по криволинейной траектории

Согласно недавнему исследованию, проведенному исследователями Мичиганского университета, корректировка экспериментальных методов позволила впервые "однократно" диагностировать ускорение электронов через лазерный кильватерный ускоритель по криволинейной траектории. Результаты опубликованы в журнале Physical Review Letters. Устройство запускает лазер через пар, создавая ионизированную плазму, а затем отделяет электроны от ионов, создавая "след за собой", похожий на след, который оставляет лодка, двигаясь по воде. Затем вводится электронный луч в ускоритель, который "плывет" по следу, быстро набирая энергию. Свойства фотонов, а именно энергии фотонов и угловое распределение, полностью определяются свойствами электронного пучка. Таким образом, измерив свойства пространственно разрешенного фотона, исследователи смогли собрать воедино процесс ускорения электронов на основе одного эксперимента.

2024-06-13

Лабораторная реализация релятивистских пучков парной плазмы

Плазма широко распространена в условиях глубокого космоса, ее производство в лабораторных условиях — сложная задача. Впервые, международная группа ученых, в том числе исследователи из Лаборатории лазерной энергетики (LLE) Рочестерского университета, экспериментально сгенерировала релятивистские электрон-позитронные парные плазменные пучки высокой плотности, производя на два-три порядка величины больше пар, чем сообщалось ранее. Выводы команды опубликованы в журнале Nature Communications. Этот прорыв открывает двери для последующих экспериментов, которые могут привести к фундаментальным открытиям о том, как работает Вселенная.

2023-09-25

ATLAS измеряет силу сильного взаимодействия с рекордной точностью

В статье, только что отправленной в Nature Physics и в настоящее время доступной на сервере препринтов arXiv, коллаборация ATLAS описывает, как она использовала Z-бозон, электрически нейтральный носитель слабого взаимодействия, для определения силы сильного взаимодействия с беспрецедентной неопределенностью — ниже 1%. В новом анализе команда ATLAS сосредоточилась на тщательно выбранных распадах Z-бозона на два лептона (электроны или мюоны) и измерила поперечный импульс Z-бозона через продукты его распада.

2022-12-22

Прямое наблюдение процесса захвата электронов и позитронов

Группа под руководством профессора Цуёси Сувада из KEK успешно установила новый тип мониторов пучка в источник позитронов SuperKEKB. «Идея состоит в том, чтобы использовать широкополосный монитор с простой стержневой антенной», — говорит Сувада. «Эта идея хорошо известна в технике обнаружения радиочастотных волн. Впервые в КЕК был успешно проведен эксперимент с использованием пучков заряженных частиц в ускорителях высоких энергий, таких как пучки электронов и позитронов. Электронный (или позитронный) пучок явно предшествует позитронному (или электронному) пучку с некоторым временным интервалом во временной области в секции захвата».


PhysReal • Физическая реальность

Администрация не несет ответственности за достоверность информации, опубликованной в рекламных объявлениях. Материалы, опубликованные в блогах, отражают позиции их авторов, которые могут не совпадать с мнением редакции. Использование публикаций сайта разрешается при наличии прямой ссылки на PhysReal.
Контактный E-mail:

Telegram: https://t.me/physreal
ВКонтакте: https://vk.com/physreal
RSS (XML): Новости физики

Copyright © 2024 Development by Programilla.com