2024-04-08

В ОИЯИ создали позиционно-чувствительный монитор медленных нейтронов

Ученые Лаборатории нейтронной физики Объединенного института ядерных исследований разработали детектор тепловых и холодных нейтронов на основе твердотельного конвертера. Новое устройство будет обладать повышенной радиационной стойкостью по сравнению с аналогами, и срок его службы в нейтронном пучке будет дольше. Оно позволит контролировать флуктуацию плотности потока падающего пучка, и его легко масштабировать. Прототип детектора уже изготовлен в лаборатории, в дальнейшем устройство предлагается применить на одном из спектрометров реактора ИБР-2. Изобретение может быть использовано для исследований в области конденсированных сред, измерения профиля пучка при бор-захватной терапии, контроля перемещения делящихся веществ и др.

2024-03-28

Фемтосекундный волоконный лазерный генератор и усилитель с длиной волны 635 нм

В Advanced Photonics Nexus сообщается о разработке фемтосекундного волоконного генератора и усилителя с синхронизацией мод видимого света, излучающего красный свет с длиной волны 635 нм и имеющего конфигурацию резонатора в виде девятки. В качестве усиливающей среды видимого диапазона используется фторидное волокно с двойной оболочкой. Видимая самозапускающаяся синхронизация мод напрямую генерирует красные лазерные импульсы с длительностью импульса 199 фс и частотой повторения 53,957 МГц от генератора. Точный контроль расстояния между парами решеток может переключить состояние импульса с диссипативного солитона или солитона с растянутыми импульсами на обычный солитон. Система усиления чирпированных импульсов в генераторе значительно повышает производительность лазера, в результате чего средняя выходная мощность превышает 1 Вт, энергия импульса составляет 19,55 нДж, а длительность импульса с дечирпированием составляет 230 фс.

2024-03-27

Измерение земных приливов с помощью диамагнитно-левитирующего микрогенератора при комнатной температуре

Физики разработали высокочувствительный гравиметр, который может стабильно работать при комнатной температуре. Большой магнит прикрепили вверху шкафа, под большим магнитом поместили малый магнит, в отталкивающем поле которого расположили графитовую оболочку. Противоположный магнетизм заставил меньший магнит левитировать. Небольшое отталкивание привело к вертикальным колебаниям — регулировка расстояния между магнитами позволила уменьшить их до 1 Гц. Затем был добавлен провод, который свисал с большего магнита — его движение вверх или вниз отражало изменения гравитационного притяжения. Это движение измерялось с помощью вертикального лазера, который испытывал разную степень интенсивности (поскольку во время движения его блокировал провод) — это позволило рассчитать величину гравитации.

2024-03-07

Характеристика и контроль инфракрасной фононной аномалии двухслойного графена в оптико-электрической силовой наноскопии

Корейский научно-исследовательский институт стандартов и науки (KRISS) разработал гибридный наномикроскоп, способный одновременно измерять различные свойства наноматериалов. Прибор сочетает в себе функции атомно-силовой микроскопии, фотоиндуцированной силовой микроскопии и электростатической силовой микроскопии. Вместо использования линз для измерения образца применяется тонкий функциональный зонд, что позволяет одновременно измерять оптические и электрические свойства, а также форму наноматериалов за одно сканирование. Группа метрологии свойств материалов KRISS разъяснила принципы уникальной реакции поглощения инфракрасного излучения, наблюдаемой в двухслойном графене с помощью гибридного наномикроскопа. Исследователи KRISS подтвердили, что это явление вызвано дисбалансом зарядов между двумя слоями графена. Они также экспериментально продемонстрировали способность контролировать поглощение инфракрасного излучения, намеренно вызывая и регулируя дисбаланс зарядов.

2024-02-28

Интегрированный микроволновый фотонный процессор на основе ниобата лития

Разработан микроволновый фотонный чип, способный выполнять сверхбыструю аналоговую электронную обработку сигналов и вычисления с использованием оптики, в 1000 раз быстрее и потребляет меньше энергии, чем традиционный электронный процессор. Для сверхбыстрого преобразования электрооптических сигналов была усовершенствована технология микроволновой фотоники (MWP). Производительность обеспечивается встроенным процессором MWP на базе тонкопленочной платформы из ниобата лития (LN), способным выполнять многоцелевые задачи обработки и вычисления аналоговых сигналов.

2024-02-07

Компактный и эффективный сканирующий микроскоп с фотонным разрешением

Разработан компактный и эффективный микроскоп ISM (сканирующая микроскопия изображений), оснащенный матричным детектором однофотонных лавинных диодов (SPAD), способным обеспечивать структурные и функциональные изображения с высоким разрешением в единой архитектуре. Исследование опубликовано в журнале Advanced Photonics. Матричный детектор SPAD состоит из 25 независимых диодов, расположенных в квадратной сетке. Небольшой размер и асинхронное считывание позволяют быстро обнаруживать падающие фотоны флуоресценции. Схема сбора данных, основанная на методе цифровой частотной области (DFD), представляет собой метод гетеродинной выборки, который позволяет строить гистограмму затухания флуоресценции с временным разрешением до 400 пс, что подходит для большинства приложений флуоресцентной визуализации.

2024-02-02

В МАИ разработали акустическую систему навигации с миллиметровой точностью

В Московском авиационном институте разработали акустическую систему, позволяющую определять положение объекта с точностью до нескольких миллиметров. Её можно применить в строительстве, на складах и в ангарах, где логистику осуществляют роботы, на промышленных предприятиях, в геодезии. Работа ведётся на базе студенческого конструкторского бюро «Сигнал». Руководитель проекта — старший преподаватель кафедры 410 «Радиолокация, радионавигация и бортовое радиоэлектронное оборудование» МАИ Василий Егоров.

2024-01-26

Разработан сверхбыстрый детектор утечек водорода

Разработан первый в мире датчик водорода со скоростью менее 0,6 секунды. Устройство представляет собой дифференциальное копланарное устройство, в котором нагреватель и чувствительные материалы расположены рядом в одной плоскости, чтобы преодолеть неравномерное распределение температуры существующих газовых датчиков, где нагреватель, изолирующий слой и чувствительные материалы уложены вертикально. Палладиевый чувствительный наноматериал имеет полностью плавающую структуру и подвергается воздействию воздуха снизу, максимально увеличивая площадь реакции с газом и обеспечивая высокую скорость реакции. Кроме того, палладиевый чувствительный материал работает при одинаковой температуре по всей площади.

2023-11-06

Обнаружение скрытых дефектов материалов с помощью однопиксельного терагерцового датчика

Учёные разработали уникальный терагерцовый датчик, который может быстро обнаруживать скрытые дефекты или объекты в целевом объеме образца с помощью однопиксельного спектроскопического терагерцового детектора. Вместо поточечного сканирования и формирования цифрового изображения этот датчик исследует объем образца, освещенного терагерцовым излучением за один снимок без формирования цифровой обработки изображения. Статья опубликована в журнале Nature Communications. Этот новый датчик состоит из серии дифракционных слоев, автоматически оптимизированных с использованием алгоритмов глубокого обучения. После обучения эти слои преобразуются в физический прототип с использованием подходов аддитивного производства, таких как 3D-печать. Это позволяет системе выполнять полностью оптическую обработку без обременительной необходимости растрового сканирования или захвата/обработки цифровых изображений.

2023-10-31

Успешно разработан первый в мире сверхпроводящий широкополосный детектор фотонов

Исследователи из Национального института информационных и коммуникационных технологий изобрели новую структуру сверхпроводящего полоскового фотонного детектора, которая обеспечивает высокоэффективное обнаружение фотонов даже с широкой полоской, и преуспели в разработке первого в мире сверхпроводящего широкополосного детектора фотонов (SWSPD). Ширина полосы детектора более чем в 200 раз шире, чем у обычных сверхпроводниковых нанополосковых детекторов фотонов (SNSPD). Эта технология может помочь решить проблемы низкой производительности и поляризационной зависимости, существующие в обычных SNSPD. Ожидается, что новый SWSPD будет применяться в различных передовых технологиях, таких как квантовая информационная связь и квантовые компьютеры, что позволит на ранней стадии социального внедрения этих передовых технологий. Работа опубликована в журнале Optica Quantum.


PhysReal • Физическая реальность

Администрация не несет ответственности за достоверность информации, опубликованной в рекламных объявлениях. Материалы, опубликованные в блогах, отражают позиции их авторов, которые могут не совпадать с мнением редакции. Использование публикаций сайта разрешается при наличии прямой ссылки на PhysReal.
Контактный E-mail:

Telegram: https://t.me/physreal
ВКонтакте: https://vk.com/physreal
RSS (XML): Новости физики

Copyright © 2024 Development by Programilla.com