2024-11-15

Физики создали первый полностью механический кубит

Команда физиков из ETH Zürich построила первый в мире работающий механический кубит. В своей статье, опубликованной в журнале Science, учёные описывают идею создания такого кубита и приводят данные тестирования. Вместо представления данных только единицами и нулями кубиты могут хранить данные в суперпозиции обоих состояний. Для этого физики создали то, что они описывают как мембрану, похожую на кожуру барабана, которая может удерживать информацию в устойчивом состоянии, вибрационном состоянии или в состоянии, сочетающем в себе и то, и другое одновременно. Для решения проблемы кратковременности в качестве механического резонатора был использован пьезоэлектрический диск, прикрепленный к сапфировому основанию. Затем они прикрепили кубит из сверхпроводящего материала к его собственной сапфировой основе, используя специальную разработанную технологию. В результате появился кубит со временем когерентности, зависящим от типа используемого сверхпроводника, и в среднем лучше, чем у гибридных или виртуальных кубитов, используемых в других системах.

2024-10-17

Новый сверхпроводящий кубит может работать без окружения магнитным полем

Команда компьютерных инженеров из Национального института информационных и коммуникационных технологий, корпорации NTT и Университета Нагои разработала, как они утверждают, первый в мире сверхпроводящий кубит, который может работать без необходимости окружающего магнитного поля. В своей статье, опубликованной в журнале Communications Materials, группа описывает, как они использовали ферромагнитный джозефсоновский переход для создания потокового кубита и насколько хорошо он работал. Учёные обнаружили, что использование π-перехода устраняет необходимость в катушках и производимом ими шуме. Он также допускает сдвиг фазы на 180°, что, как отмечают исследователи, позволяет кубиту функционировать независимо там, где он работает с максимальной эффективностью. Чтобы создать π-переход, исследователи объединили ферромагнитное устройство Джозефсона с ранее разработанной технологией нитридных сверхпроводящих кубитов NICT. Проведенные к настоящему моменту испытания показали, что новый тип кубита способен демонстрировать свойства когерентности, хотя они все же немного короче, чем конструкции без π-переходов.

2024-10-04

Прямое измерение фазового соотношения тока sin(2φ) в графеновом сверхпроводящем квантовом интерференционном устройстве

Исследователи из Университета Гренобль-Альпы недавно продемонстрировали прямое измерение тонкого эффекта, а именно фазового соотношения тока sin (2φ), в сверхпроводящем квантовом интерференционном устройстве на основе графена, основанном на перестраиваемых затворах графеновых джозефсоновских переходах. Используемый метод измерений, изложенный в статье, опубликованной в Physical Review Letters, может способствовать разработке более стабильных сверхпроводящих кубитов, менее склонных к декогеренции. Экспериментальная установка основывалась на усовершенствованном методе одновременного контроля и считывания текущего фазового соотношения пары джозефсоновских переходов. Показано, что, объединив два графеновых джозефсоновских перехода в сверхпроводящем квантовом интерференционном устройстве, можно получить фазовое соотношение тока sin(2φ) благодаря контролю интерференционных эффектов между куперовскими парами с помощью магнитного поля.

2024-10-03

Физики добились сильной связи андреевских кубитов через микроволновый резонатор

Физикам из Базельского университета впервые удалось когерентно соединить два андреевских кубита на макроскопическом расстоянии. Они добились этого с помощью микроволновых фотонов, генерируемых в узком сверхпроводящем резонаторе. Результаты экспериментов и сопутствующих расчетов были недавно опубликованы в журнале Nature Physics, заложив основу для использования связанных андреевских кубитов в квантовой связи и квантовых вычислениях. Результаты показывают превосходное согласие с теоретическими моделями.

2024-08-26

Когерентный акустический контроль орбитальных состояний дефектов в пределе сильного воздействия

Исследователи из Корнелльского университета продемонстрировали, что акустические звуковые волны можно использовать для управления движением электрона, вращающегося вокруг дефекта решетки в алмазе. Эта технология потенциально может повысить чувствительность квантовых датчиков и использоваться в других квантовых устройствах. Работа опубликована в журнале PRX Quantum. Был построен микроскопический динамик на поверхности алмазного чипа, который работал на частоте, соответствующей электронному переходу. Используя методы, которые применяются в магнитно-резонансной томографии, был продемонстрирован когерентный контроль одного электрона внутри алмазного чипа. Учёные сделали орбитальную версию спинового резонанса: взяли те инструменты, которые мы знаем из спинового резонанса, например, когерентный контроль и осцилляции Раби, и с помощью акустического резонатора в пару гигагерц отобразили это на орбитальные состояния и увидели, что эти методы по-прежнему применимы.

2024-07-11

Обратный эффект Мпембы, продемонстрированный на кубите с одним захваченным ионным атомом

Хорошо известно, что при определенных обстоятельствах теплая жидкость замерзает быстрее, чем холодная. Это явление изучал танзанийский старшеклассник по имени Эрасто Мпемба в 1960-х годах. Было обнаружено, что при других обстоятельствах также происходит обратный эффект Мпембы, при котором холодная вода нагревается быстрее, чем горячая. В этой новой работе исследовательская группа продемонстрировала, что такие эффекты могут происходить в квантовом масштабе. Группа физиков из Института науки Вейцмана в Израиле успешно продемонстрировала обратный эффект Мпембы на квантовом уровне с использованием одиночных захваченных ионов. В своем исследовании, опубликованном в журнале Physical Review Letters, группа продемонстрировала эффект, захватив ион стронция-88, связанный с внешней термальной ванной. Ион сначала охлаждался (или нагревался) с помощью лазеров, а затем вступал во взаимодействие с теплой (или холодной) ванной, которая нагревалась (или охлаждалась) с помощью второго лазера, что приводило к медленной декогеренции его квантового состояния.

2024-06-09

В России разработан уникальный модуль для сверхпроводниковых квантовых компьютеров

Командой ФГУП «ВНИИА им. Н.Л. Духова» и МГТУ им. Н.Э. Баумана на базе совместного исследовательского центра «Функциональные Микро/Наносистемы» (НОЦ ФМН) разработан модуль считывания на базе широкополосных параметрических криоусилителей для высокоточного считывания состояний кубитов. Коэффициент усиления устройств превышает 15 дБ в широкой полосе рабочих частот свыше 500 МГц при мощности насыщения -100 дБм и шумовой температуре системы на уровне теоретического предела порядка 350 миликельвин. Выводимый на рынок модуль считывания позволяет более чем в 10 раз повысить точность считывания состояний сверхпроводниковых кубитов при реализации сложных квантовых алгоритмов.

2024-05-06

Анизотропное обменное взаимодействие двух кубитов со спином дырок

Исследователи из Базельского университета и NCCR SPIN добились первого контролируемого взаимодействия между двумя кубитами со спином дырок в обычном кремниевом транзисторе. Квантовому компьютеру для выполнения вычислений нужны "квантовые ворота". Они представляют собой операции, которые манипулируют кубитами и связывают их друг с другом. Как сообщают исследователи в журнале Nature Physics, им удалось соединить два кубита и вызвать контролируемый переворот одного из их спинов в зависимости от состояния спина другого — известный как управляемый переворот спина. Связь двух спиновых кубитов основана на их обменном взаимодействии, которое происходит между двумя неразличимыми частицами, взаимодействующими друг с другом электростатически. Удивительно, но обменная энергия дырок не только электрически управляема, но и сильно анизотропна.

2024-03-18

Двухосное управление спиновым кубитом в реальном времени

Международное сотрудничество под руководством ученых из Института Нильса Бора (NBI) Копенгагенского университета продемонстрировало метод, который позволяет использовать шум для обработки квантовой информации. В результате производительность фундаментальной квантовой вычислительной единицы информации — кубита — увеличивается на 700%. Эти результаты опубликованы в журнале Nature Communications. Для ускорения были использованы программируемая пользователем вентильная матрица и машинное обучение. Идея в том, чтобы проводить измерения и анализ в одном и том же микропроцессоре, который настраивает систему в реальном времени. В противном случае схема не будет достаточно быстрой для приложений квантовых вычислений.

2024-03-14

Микроловушка Пеннинга для квантовых вычислений

Экспериментально продемонстрировано, что ионные ловушки, подходящие для использования в квантовых компьютерах, могут быть построены с использованием статических магнитных полей вместо осциллирующих. В этих статических ловушках с дополнительным магнитным полем (ловушки Пеннинга) реализовывался как произвольный транспорт, так и необходимые операции для будущих суперкомпьютеров. Исследователи недавно опубликовали свои результаты в научном журнале Nature. Установлено, что энергетические состояния кубита захваченного иона можно контролировать, сохраняя квантово-механические суперпозиции. Когерентный контроль работал как с электронными (внутренними) состояниями иона, так и с (внешними) квантованными колебательными состояниями, а также для связи внутренних и внешних квантовых состояний.


PhysReal • Физическая реальность

Администрация не несет ответственности за достоверность информации, опубликованной в рекламных объявлениях. Материалы, опубликованные в блогах, отражают позиции их авторов, которые могут не совпадать с мнением редакции. Использование публикаций сайта разрешается при наличии прямой ссылки на PhysReal.
Контактный E-mail:

Telegram: https://t.me/physreal
ВКонтакте: https://vk.com/physreal
RSS (XML): Новости физики

Copyright © 2024 Development by Programilla.com