2024-02-14

Наблюдение джозефсоновских гармоник в туннельных переходах

Обнаружено, что туннельные переходы Джозефсона — фундаментальные строительные блоки сверхпроводящих квантовых компьютеров — более сложны, чем считалось ранее. Как и обертоны в музыкальном инструменте, гармоники накладываются на основной лад. Как следствие, поправки могут привести к тому, что квантовые биты станут в два-семь раз более стабильными. Туннельные переходы Джозефсона состоят из двух сверхпроводников с тонким изолирующим барьером между ними, и на протяжении десятилетий эта схема описывалась с помощью синусоидальной модели. Показано, что стандартная модель не может полностью описать джозефсоновские переходы, которые используются для создания квантовых битов. Для описания туннельного тока между двумя сверхпроводниками требуется расширенная модель, включающая высшие гармоники.

2024-02-12

Сверхпроводящий кубит на основе скрученных купратных гетероструктур Ван-дер-Ваальса

Исследователи из Института сложных систем CNR (Consiglio Nazionale delle Ricerche), Института химической физики твердого тела Макса Планка и других институтов по всему миру недавно представили новый сверхпроводящий кубит с емкостным шунтированием, который они назвали «флауэрмоном». Этот кубит, представленный в Physical Review Letters, основан на скрученных купратных гетероструктурах Ван-дер-Ваальса. Новый кубит, представленный исследователями, по существу состоит из одного перехода Ван-дер-Ваальса-Джозефсона BSCCO. Этот переход имеет угол закручивания около 45°, шунтируется большим конденсатором и считывающим сверхпроводящим резонатором.

2024-02-01

Экспериментальное исследование флуктуаций в квантовых устройствах

Используя платформу квантового отжига D-Wave, обнаружено, что флуктуации могут снизить общую энергию взаимодействующих магнитных моментов, и это понимание может помочь снизить стоимость квантовой обработки в устройствах. Учёные исследовали сложное взаимодействие примерно 2000 кубитов внутри асимметричной гексагональной решетки. Они фиксировали влияние факторов, которые вызывают беспорядок на магнитные моменты — небольшого магнитного поля, создаваемого сверхпроводящими кубитами. Результаты доказали противоречивый аргумент: при некоторых физических условиях конфигурации с кластерным распределением дефектов становятся более вероятным состоянием, бросая вызов традиционным предположениям о взаимосвязи между беспорядком и энтропией.

2023-12-11

Разработка первой сверхпроводящей катушки на основе железа класса Тесла для применения в сильных полях

Недавно исследовательская группа под руководством профессора Чена Венге из Института физических наук Хэфэй (HFIPS) Китайской академии наук (CAS) вместе с исследовательской группой профессора Ма Янвэя из Института электротехники CAS разработала первую сверхпроводящую катушку на основе железа класса Тесла для применения в сильных полях. Результаты исследования опубликованы в журнале Superconductor Science and Technology. Катушка успешно создала напряженность центрального магнитного поля 1,03 Тл в фоновом поле 20 Тл магнита с водяным охлаждением WM3 в Лаборатории сильных магнитных полей, превзойдя все ранее опубликованные испытания производительности сверхпроводниковых катушек на основе железа.

2023-11-06

Управляемое расщепление одной куперовской пары в гибридных системах квантовых точек

Исследователи из Делфтского технологического университета (TU Delft) недавно продемонстрировали контролируемое расщепление медной пары на два составляющих ее электрона в гибридной системе квантовых точек, удерживая их после разделения. Их статья, опубликованная в Physical Review Letters, может открыть новые возможности для изучения сверхпроводимости и запутанности в системах квантовых точек. Благодаря своей уникальной конструкции и отсутствию электрических контактов, в гибридной системе квантовых точек не протекает электрический ток. Когда учёные «вытолкнули» одну куперовскую пару из сверхпроводника, электроны оказались изолированными на квантовых точках. Таким образом исследователи смогли удержать расщепленные электроны, которые ранее были частью одной куперовской пары.

2023-10-31

Успешно разработан первый в мире сверхпроводящий широкополосный детектор фотонов

Исследователи из Национального института информационных и коммуникационных технологий изобрели новую структуру сверхпроводящего полоскового фотонного детектора, которая обеспечивает высокоэффективное обнаружение фотонов даже с широкой полоской, и преуспели в разработке первого в мире сверхпроводящего широкополосного детектора фотонов (SWSPD). Ширина полосы детектора более чем в 200 раз шире, чем у обычных сверхпроводниковых нанополосковых детекторов фотонов (SNSPD). Эта технология может помочь решить проблемы низкой производительности и поляризационной зависимости, существующие в обычных SNSPD. Ожидается, что новый SWSPD будет применяться в различных передовых технологиях, таких как квантовая информационная связь и квантовые компьютеры, что позволит на ранней стадии социального внедрения этих передовых технологий. Работа опубликована в журнале Optica Quantum.

2023-10-27

Наблюдение и контроль гибридных режимов переноса спиновой волны и тока Мейсснера или управление волнами в магнитах с помощью сверхпроводников

Физики из Делфтского технологического университета впервые показали, что можно контролировать и манипулировать спиновыми волнами на чипе с помощью сверхпроводников. Эти крошечные волны в магнитах могут стать альтернативой электронике в будущем. Исследование, опубликованное в журнале Science, в первую очередь дает физикам новое представление о взаимодействии магнитов и сверхпроводников. Спиновая волна генерирует магнитное поле, которое, в свою очередь, порождает сверхток в сверхпроводнике. Этот сверхток действует как зеркало для спиновой волны. Сверхпроводящий электрод отражает магнитное поле обратно в спиновую волну. Сверхпроводящее зеркало заставляет спиновые волны двигаться вверх и вниз медленнее, что делает волны легко управляемыми.

2023-10-25

Однофотонная камера на сверхпроводящей нанопроволоке с разрешением 400 000 пикселей

Исследователи из Национального института стандартов и технологий (NIST) и их коллеги создали сверхпроводящую камеру, содержащую 400 000 пикселей — в 400 раз больше, чем любое другое устройство такого типа. Сверхпроводящие камеры позволяют ученым улавливать очень слабые световые сигналы, исходящие как от удаленных объектов в космосе, так и от частей человеческого мозга. Наличие большего количества пикселей может открыть множество новых приложений в науке и биомедицинских исследованиях. Исследователи сообщили о своей работе в выпуске журнала Nature от 26 октября.

2023-09-29

Сверхпроводимость и сильные взаимодействия в перестраиваемом муаровом квазикристалле

В ходе исследования, которое могло бы стимулировать интерес к загадочному классу материалов, известному как квазикристаллы, ученые и коллеги Массачусетского технологического института обнаружили относительно простой и гибкий способ создания новых атомарно тонких версий, которые можно настроить на важные явления. В работе, опубликованной в журнале Nature, они описывают именно это, чтобы материалы проявляли сверхпроводимость и многое другое.

2023-08-23

Диодный эффект Джозефсона, полученный в результате когерентной связи ближнего действия

Сверхпроводящий (SC) диодный эффект представляет собой интересное невзаимное явление, возникающее, когда материал подвергается SC в одном направлении и резистивному в другом. Этот эффект был в центре внимания многочисленных физических исследований, поскольку его наблюдение и надежный контроль в различных материалах могут позволить в будущем разработать новые интегральные схемы. Исследователи из RIKEN и других институтов в Японии и США недавно наблюдали эффект SC-диода в недавно разработанном устройстве, состоящем из двух когерентно связанных джозефсоновских переходов. Их статья, опубликованная в журнале Nature Physics, может помочь в разработке многообещающих технологий, основанных на связанных джозефсоновских переходах.


PhysReal • Физическая реальность

Администрация не несет ответственности за достоверность информации, опубликованной в рекламных объявлениях. Материалы, опубликованные в блогах, отражают позиции их авторов, которые могут не совпадать с мнением редакции. Использование публикаций сайта разрешается при наличии прямой ссылки на PhysReal.
Контактный E-mail:

Telegram: https://t.me/physreal
ВКонтакте: https://vk.com/physreal
RSS (XML): Новости физики

Copyright © 2024 Development by Programilla.com