2024-09-10

Открытие и характеристика плотного субсатурнового TOI-6651 b

Используя Transiting Exoplanet Survey Satellite (TESS), астрономы из Физической исследовательской лаборатории (PRL) в Ахмадабаде, Индия, обнаружили новую экзопланету субсатурнового типа с относительно высокой плотностью. Об этом открытии было сообщено в исследовательской статье, опубликованной 2 сентября в журнале Astronomy & Astrophysics. Согласно исследованию, TOI-6651 b имеет радиус около 5,09 радиусов Земли, а его масса в 61 раз больше массы нашей планеты. Это дает объемную плотность на уровне 2,52 г/см³, что делает его самым плотным субсатурном, обнаруженным с помощью TESS. TOI-6651 b вращается вокруг своего хозяина каждые 5,05 дней по орбите с эксцентриситетом 0,09 на расстоянии приблизительно 0,06 а.е. от него. Равновесная температура планеты оценивается в 1493 К. Что касается родительской звезды, TOI-6651, ее радиус составляет около 1,32 солнечных радиусов, а масса — 1,72 солнечных масс. Эффективная температура звезды составляет 5940 К, а ее металличность, по измерениям, составляет 0,225 декс.

2024-08-30

Впервые обнаружены ключевые доказательства предела ускорения космических лучей в W51

Обсерватория больших высотных атмосферных ливней (LHAASO) официально опубликовала точные измерения высокоэнергетического гамма-излучения от комплекса W51, подтвердив, что он является ускорителем космических лучей, разгоняющим частицы до так называемых сверхвысоких энергий (СВЭ, выше 10¹⁴ электронвольт). Результаты также предоставляют ключевые доказательства предела ускорения космических лучей в этом комплексе. Исследование было проведено Международным сотрудничеством LHAASO под руководством Института физики высоких энергий Китайской академии наук. Результаты опубликованы в Интернете в Science Bulletin.

2024-08-20

Моделирование радиационной плазмы корон аккреционного потока черной дыры в жестком и мягком состояниях

Исследователи из Хельсинкского университета добились успеха в том, к чему стремились с 1970-х годов: объяснили рентгеновское излучение из окрестностей черной дыры. Излучение возникает из-за комбинированного эффекта хаотических движений магнитных полей и турбулентного плазменного газа. Используя детальное суперкомпьютерное моделирование, исследователи из Хельсинкского университета смоделировали взаимодействие между излучением , плазмой и магнитными полями вокруг черных дыр. Было обнаружено, что хаотические движения, или турбулентность, вызванные магнитными полями, нагревают локальную плазму и заставляют ее излучать. Исследование было опубликовано в Nature Communications. Моделирование, использованное в исследовании, является первой моделью физики плазмы, которая включает все важные квантовые взаимодействия между излучением и плазмой. Моделирование показало, что турбулентность вокруг черных дыр настолько сильна, что даже квантовые эффекты становятся важными для динамики плазмы. В моделируемой смеси электронно-позитронной плазмы и фотонов локальное рентгеновское излучение может превращаться в электроны и позитроны, которые затем могут аннигилировать обратно в излучение при соприкосновении.

2024-08-13

Радиусы ядерного заряда изотопов кремния

В недавнем исследовании ученые провели лазерные измерения ядерных радиусов стабильных изотопов кремния кремний-28, кремний-29 и кремний-30. Они также измерили радиус нестабильного ядра кремний-32, которое имеет 14 протонов и 18 нейтронов. Исследователи использовали разницу между радиусом ядра кремний-32 и его зеркального ядра аргон-32, которое имеет 18 протонов и 14 нейтронов, чтобы установить ограничения на переменные, которые помогают описывать физику астрофизических объектов, таких как нейтронные звезды. Результаты являются важным шагом в развитии ядерной теории, изучении ядер и их компонентов. Статья опубликована в журнале Physical Review Letters. Исследователи использовали измерения сдвигов атомных изотопов методом лазерной спектроскопии для измерения ядерного радиуса различных изотопов кремния на установке спектроскопии BEam Cooler and LAser (BECOLA) в Центре пучков редких изотопов (FRIB) в Университете штата Мичиган. Результаты дают важный ориентир для развития ядерной теории. Разница радиусов заряда между ядром кремния-32 и его зеркальным ядром аргоном-32 использовалась для ограничения параметров, необходимых для описания свойств плотной нейтронной материи в нейтронных звездах. Полученные результаты согласуются с ограничениями из наблюдений гравитационных волн и других дополнительных наблюдаемых.

2024-07-23

Ракета НАСА обнаружила новый процесс энергизации в верхних слоях атмосферы

Используя данные, полученные при запуске ракеты -носителя TRICE-2 (Twin Rockets to Investigate Cusp Electrodynamics), ученые НАСА изучили волны, распространяющиеся по линиям магнитного поля Земли в полярную атмосферу.Было известно, что эти волны ускоряют электроны, которые набирают скорость, «скользя» вдоль электрического поля волны. Но их воздействие на ионы — более гетерогенную группу положительно заряженных частиц, которые существуют наряду с электронами — было неизвестно. Оценив ионную смесь, через которую они пролетали — в основном протоны и однозарядные ионы кислорода — ученые обнаружили, что эти волны ускоряли протоны, вращающиеся вокруг линий магнитного поля Земли, а также электроны, скользящие по волнам. Результаты, опубликованные в Physical Review Letters, раскрывают новый способ энергетизации нашей верхней атмосферы.

2024-07-10

Уточнение расчётов на сколько быстрее идет время на Луне

Группа физиков из Лаборатории реактивного движения NASA в Калифорнийском технологическом институте точнее подсчитала, насколько быстрее время течет на Луне, чем на Земле. Статья, описывающая математику, которую они использовали для расчетов, и их результаты, была размещена на сервере препринтов arXiv. Обнаружено, что время на Луне идет на 0,0000575 секунд быстрее в день (57,50 мкс/д), чем на Земле. На основе этого числа можно сделать и другие расчеты — например, если бы человек прожил на Луне 274 года, он был бы на 5,76 секунд старше, чем если бы он жил на Земле все это время.

2024-07-10

Влияние тензорной силы на ядерную материю в релятивистской теории ab initio

Тензорная сила является важнейшим компонентом взаимодействия нуклон-нуклон (NN) и оказывает важное влияние на структурные и динамические свойства ядерной многочастичной системы. Начиная с реалистичного взаимодействия NN, учёные систематически изучают эффекты тензорной силы на уравнении состояния и энергии симметрии ядерной материи в рамках релятивистской теории Бракнера-Хартри-Фока (RBHF), которая является одним из важнейших релятивистских методов ab initio. Для энергий связи на частицу симметричной ядерной материи (SNM) и энергии симметрии эффекты тензорной силы привлекательны и более выражены вблизи эмпирической плотности насыщения. Для чистой нейтронной материи эффекты тензорной силы незначительны. Исследование показало, что сильная тензорная сила заставляет систему нейтрон-протон отклоняться от унитарного предела. Настраивая силу тензорной силы, разбавленный SNM располагается на унитарном пределе. При рассмотрении только взаимодействия в канале 3S1–3D1 энергия основного состояния разбавленного SNM оказывается пропорциональной энергии свободного ферми-газа с масштабным коэффициентом 0,38, что показывает хорошие универсальные свойства для четырехкомпонентного унитарного ферми-газа (спин-1/2 и изоспин-1/2). Работа опубликована в журнале Science Bulletin.

2024-06-25

Солнечная конвекция сверхгранулярного масштаба, не объясняемая теорией длины смешивания

Солнце генерирует энергию в своем ядре посредством ядерного синтеза; затем эта энергия переносится на поверхность, откуда выходит в виде солнечного света. В исследовании под названием "Сверхгранулярная солнечная конвекция, не объясняемая теорией длины смешивания", опубликованном в журнале Nature Astronomy, исследователи объясняют, как они использовали доплеровские интенсивность и магнитные изображения, полученные с помощью гелиосейсмического и магнитного формирователя изображения (HMI) на борту космического аппарата NASA Solar Спутник Dynamics Observatory (SDO) для идентификации и характеристики примерно 23 000 супергранул (структура потока, которая переносит тепло от скрытой внутренней части Солнца на его поверхности).

2024-06-13

Лабораторная реализация релятивистских пучков парной плазмы

Плазма широко распространена в условиях глубокого космоса, ее производство в лабораторных условиях — сложная задача. Впервые, международная группа ученых, в том числе исследователи из Лаборатории лазерной энергетики (LLE) Рочестерского университета, экспериментально сгенерировала релятивистские электрон-позитронные парные плазменные пучки высокой плотности, производя на два-три порядка величины больше пар, чем сообщалось ранее. Выводы команды опубликованы в журнале Nature Communications. Этот прорыв открывает двери для последующих экспериментов, которые могут привести к фундаментальным открытиям о том, как работает Вселенная.

2024-06-11

Дисперсионное соотношение для фотонов с ненулевой массой и строгий верхний предел массы фотона

В исследовании, опубликованном в The Astrophysical Journal, профессор Чжоу Ся из Синьцзянской астрономической обсерватории (XAO) Китайской академии наук и его коллеги впервые вывели дисперсионное соотношение для фотонов с ненулевой массой, распространяющихся в плазме, и установил строгий верхний предел массы фотона в 9,52 × 10 -46 кг (5,34 × 10 -10 эВ c -2 ) с использованием данных, собранных сверхширокополосными (СШП) приемниками по времени пульсаров и быстрым радиовсплескам (FRB). Учёные предоставили новую теоретическую основу для понимания характеристик распространения массивных фотонов в плазме. Были использованы высокоточные данные синхронизации из массива синхронизации пульсаров Паркса (PPTA) и дедисперсированные данные импульсов из FRB. Используя широкий диапазон частот, охватываемый СШП-приемниками, физики улучшили соотношение сигнал/шум и точность измерений дисперсии. Высокое временное разрешение технологии СШП позволило точно определить время прибытия сигнала, эффективно уменьшая эффекты дисперсии, вызванные межзвездной средой.


PhysReal • Физическая реальность

Администрация не несет ответственности за достоверность информации, опубликованной в рекламных объявлениях. Материалы, опубликованные в блогах, отражают позиции их авторов, которые могут не совпадать с мнением редакции. Использование публикаций сайта разрешается при наличии прямой ссылки на PhysReal.
Контактный E-mail:

Telegram: https://t.me/physreal
ВКонтакте: https://vk.com/physreal
RSS (XML): Новости физики

Copyright © 2024 Development by Programilla.com