2024-11-04

Для исследования квантовой запутанности предложен тест Белла

Учёные предложили новый способ прямого исследования квантовой запутанности. Исследование было принято к публикации в Physical Review X. Команда с кафедры физики, в которую входят доктор Марко Руберти, профессор Виталий Авербух и профессор Флориан Минтерт, придумала способ использовать тест Белла для процесса фотоионизации, когда фотон заставляет электрон выбрасываться из атома, в результате чего электрон и образующийся в результате ион остаются запутанными. Используя передовую теорию многих тел, удалось показать, что это можно сделать путем одновременного измерения спина фотоэлектрона и фотонной эмиссии оставшегося иона.

2024-08-05

Уравновешивание квантовых многочастичных быстрых нейтринных ароматических осцилляций

Недавно исследователи обнаружили, что нейтрино в очень плотной среде могут образовывать сильные корреляции (другими словами, квантовую запутанность) посредством взаимных взаимодействий. Это может происходить при коллапсе ядра сверхновых или слияниях нейтронных звезд. Со временем нейтрино с разными начальными ароматами достигают похожего равновесного аромата и распределения энергии. Статья опубликована в журнале Physical Review D. Обнаружено, что взаимодействие между нейтрино хорошо аппроксимируется с использованием результатов теории случайных матриц. Это открытие также подразумевает, что квантовые состояния нейтрино будут развиваться хаотично, поскольку они взаимодействуют друг с другом. Этот результат впоследствии был подтвержден подробными численными симуляциями, которые продемонстрировали возникновение этого хаотического поведения. Численные результаты также показывают, что после достаточно длительного взаимодействия каждое индивидуальное нейтрино дает похожее смешанное состояние импульса-аромата.

2024-05-15

Физики из Гарварда продемонстрировали самое длинное в мире расстояние между двумя узлами квантовой памяти

Команда физиков из Гарварда разработала практические основы первого квантового Интернета, соединив два узла квантовой памяти, разделенные оптоволоконной линией, развернутой по кольцу длиной примерно 22 мили через Кембридж, Сомервилл, Уотертаун и Бостон. Два узла располагались этажом друг от друга в Гарвардской лаборатории комплексной науки и техники. Каждый узел представляет собой очень маленький квантовый компьютер, сделанный из кусочка алмаза, имеющего дефект в атомной структуре, называемый центром кремниевых вакансий. Внутри алмаза резные структуры размером менее одной сотой ширины человеческого волоса усиливают взаимодействие между центром кремниевой вакансии и светом. Центр кремниевых вакансий содержит два кубита, или бита квантовой информации: один в форме электронного спина, используемого для связи, а другой в виде более долгоживущего ядерного спина, используемого в качестве кубита памяти для хранения запутанности (квантово-механический свойство, позволяющее идеально коррелировать информацию на любом расстоянии). Оба вращения полностью управляются микроволновыми импульсами. Эти алмазные устройства площадью всего несколько квадратных миллиметров размещены внутри холодильных установок, температура которых достигает -459°F.

2024-01-08

Нелокальные скирмионы как топологически устойчивые квантово-запутанные состояния света

Физики демонстрируют, что квантовая запутанность и топология неразрывно связаны между собой. Впервые продемонстрирована способность возмущать пары пространственно разделенных, но связанных между собой квантово-запутанных частиц без изменения их общих свойств. Учёные, запутав два одинаковых фотона и настроив их общую волновую функцию таким образом, что их топология или структура становятся очевидными только тогда, когда фотоны рассматриваются как единое целое, установили связь между этими фотонами посредством квантовой запутанности. Исследование было опубликовано в журнале Nature Photonics 8 января 2024 года.

2023-12-08

Запутывание молекул по требованию в реконфигурируемом оптическом пинцете

Впервые команде физиков из Принстона удалось соединить вместе отдельные молекулы в особые состояния, которые квантово-механически «запутаны». В этих причудливых состояниях молекулы остаются коррелированными друг с другом и могут взаимодействовать одновременно, даже если они находятся на расстоянии нескольких миль друг от друга или даже если они занимают противоположные концы Вселенной. Это исследование было недавно опубликовано в журнале Science.

2023-11-29

Квантовое хранение запутанных фотонов на телекоммуникационных длинах волн в кристалле

Практическая реализация требует, чтобы информация, закодированная в квантовых системах, могла надежно храниться на частотах, используемых в телекоммуникационных сетях — возможность, которая еще не была полностью продемонстрирована. В статье для Nature Communications группа профессора Сяо-Сун Ма из Нанкинского университета сообщает о рекордно длинном квантовом хранилище на телекоммуникационных длинах волн на платформе, которая может быть развернута в расширенных сетях, открывая путь для практических крупномасштабных квантовых сетей. Показано, что даже после хранения фотона в течение 1936 наносекунд запутанность пары фотонов сохраняется. Это означает, что в течение этого времени квантовым состоянием можно манипулировать, как это требуется в квантовом повторителе. Кроме того, исследователи объединили свою квантовую память с новым источником запутанных фотонов на интегрированном чипе.

2023-09-29

Сверхбыстрая динамика многих тел в пикосекундном масштабе в ультрахолодном атомном изоляторе Мотта с ридберговским возбуждением

Исследовательская группа под руководством профессора Кенджи Омори из Института молекулярных наук Национального института естественных наук использует искусственный кристалл из 30 000 атомов, выстроенных в кубическую решетку с шагом 0,5 микрона, охлажденный до температуры, близкой к абсолютному нулю. Манипулируя атомами с помощью специального лазерного света, который мигает в течение 10 пикосекунд, им удалось выполнить квантовое моделирование магнитных материалов. Результаты были опубликованы в Интернете в журнале Physical Review Letters.

2023-09-18

Масштабируемая многочастная запутанность, создаваемая спиновым обменом в оптической решетке

Используя ультрахолодные атомы, захваченные в оптические решетки, исследовательская группа успешно подготовила запутанные состояния нескольких атомов, создав двумерный атомный массив, генерируя запутанные атомные пары кубитов и последовательно соединяя эти запутанные пары. Их работа опубликована в журнале Physical Review Letters. Американское физическое общество также отметило это достижение, опубликовав в журнале Physics Magazine статью под названием «Веха в развитии квантового компьютера с оптической решеткой».

2023-05-02

Квантовая запутанность фотонов удваивает разрешение микроскопа

Оптический прибор направляет лазерный свет на особый тип кристалла, который преобразует часть фотонов, проходящих через него, в бифотоны. Даже при использовании этого специального кристалла преобразование происходит очень редко — примерно за один фотон на миллион. Используя ряд зеркал, линз и призм, каждый бифотон, который на самом деле состоит из двух отдельных фотонов, разделяется и перемещается по двум путям, так что один из парных фотонов проходит через отображаемый объект, а другой нет.

2023-01-26

Физики научились управлять двумя квантовыми источниками света, а не одним

Совершив новый прорыв, исследователи из Копенгагенского университета в сотрудничестве с Рурским университетом в Бохуме решили проблему, которая годами вызывала головную боль у квантовых исследователей. Теперь исследователи могут управлять двумя источниками квантового света, а не одним. Этот колоссальный прорыв может показаться тривиальным для тех, кто не знаком с квантовой механикой, но позволяет исследователям создать явление, известное как квантово-механическая запутанность. Это, в свою очередь, открывает новые возможности для компаний и других лиц в коммерческом использовании технологии.


PhysReal • Физическая реальность

Администрация не несет ответственности за достоверность информации, опубликованной в рекламных объявлениях. Материалы, опубликованные в блогах, отражают позиции их авторов, которые могут не совпадать с мнением редакции. Использование публикаций сайта разрешается при наличии прямой ссылки на PhysReal.
Контактный E-mail:

Telegram: https://t.me/physreal
ВКонтакте: https://vk.com/physreal
RSS (XML): Новости физики

Copyright © 2024 Development by Programilla.com