2025-02-11

Математические решения для изучения двумерного взаимодействия света в фотонных кристаллических лазерах

Фотонные кристаллические поверхностно-излучающие лазеры (PCSEL) — это усовершенствованные лазерные диоды, в которых оптическое усиление обычно распределяется латерально к распространяющемуся свету в структуре фотонного кристалла (PC). Они отличаются от традиционных лазеров разделением функций усиления, обратной связи и излучения, предлагая масштабируемую одномодовую мощность и инновационные конструкции. Это приводит к повышению производительности и новым возможностям применения. В статье, опубликованной в журнале IEEE Journal of Selected Topics in Quantum Electronics 20 ноября 2024 года, учёные разработали метод численного моделирования взаимодействия световых волн внутри PCSEL.

2025-02-11

Полностью оптическое сверхпроводящее считывание кубитов

В яростной гонке за за масштабируемыми квантовыми компьютерами группа физиков из команды профессора Йоханнеса Финка из Институте науки и технологий Австрии (ISTA) сумела преодолеть важное ограничение — добилась полностью оптического считывания сверхпроводящих кубитов, выведя технологию за пределы ее нынешних ограничений, и значительно сократила количество криогенного оборудования. Их выводы опубликованы в журнале Nature Physics.

2025-02-06

Оптико-магнитная технология пятикратного увеличения эффективности крутящего момента

Исследователи из Университета Тохоку достигли значительного прогресса в области оптомагнитных технологий, наблюдая оптомагнитный момент, примерно в пять раз более эффективный, чем в обычных магнитах. Этот прорыв, совершенный под руководством Коки Нукуи, доцента Сатоси Иихамы и профессора Сигеми Мидзуками, имеет далеко идущие последствия для развития технологий спиновой памяти и хранения данных на основе света. Оптомагнитный момент — это метод, который позволяет генерировать силу на магнитах и может быть использовано для более эффективного изменения направления магнитов с помощью света. Создав нанопленки из сплава, содержащего до 70% платины, растворенной в кобальте, было обнаружено, что уникальные релятивистские квантово-механические эффекты платины значительно усиливают магнитный момент. Исследование показало, что усиление оптико-магнитного момента объясняется орбитальным угловым моментом электронов, создаваемым циркулярно поляризованным светом, и релятивистскими квантово-механическими эффектами. Результаты исследования опубликованы в журнале Physical Review Letters.

2025-01-24

Фотоиндуцированная хиральность в нехиральном кристалле

Команда учёных из Гамбурга-Оксфорда сосредоточилась на антиферро-хиральных кристаллах, типе нехиральных кристаллов, напоминающих антиферромагнитные материалы, в которых магнитные моменты анти-выравниваются в шахматном порядке, что приводит к исчезающей чистой намагниченности. Антиферро-хиральный кристалл состоит из эквивалентных количеств лево- и правосторонних подструктур в элементарной ячейке, что делает его в целом нехиральным. Исследовательская группа под руководством Андреа Каваллери из Института структуры и динамики материи Общества Макса Планка использовала терагерцовый свет для повышения этого баланса в нехиральном материале фосфате бора (BPO₄), таким образом вызывая конечную хиральность в сверхбыстром масштабе времени. Исследование группы опубликовано в журнале Science.

2024-12-20

Пространственно-временная топология пар плазмонных спин-меронов, выявленная с помощью поляриметрической фотоэмиссионной микроскопии

Одним из наиболее мощных инструментов для изучения плазмонных волн является электронная микроскопия с временным разрешением, которая для наблюдения за волновым поведением использует ультракороткие лазерные импульсы. Недавно международная исследовательская группа существенно расширила границы этого метода. Как сообщается в Advanced Photonics, чтобы захватить полное электрическое поле плазмонных волн, учёные использовали несколько лазерных импульсов с задержкой по времени четырех разных поляризаций. Такой подход позволил достичь ранее невозможного уровня точности. Это исследование показывает, что теперь можно изучать сложные спиновые текстуры с высокой точностью и в чрезвычайно короткие сроки. Способность точно реконструировать полные электрические и магнитные поля поверхностных плазмон-поляритонов открывает новые возможности для изучения топологических свойств ближних электромагнитных полей, что может иметь важные последствия для будущих технологий на наноуровне.

2024-12-10

Оптические скирмионы из метаволокон с субволновыми характеристиками

Существующие методы генерации оптических скирмионов обычно требуют громоздких и сложных установок пространственной модуляции света, что ограничивает их масштабируемость и практическое применение. Существующие методы генерации ограничены оптическими ближними полями, что делает сложным обнаружение скирмионов, а распространение в свободном пространстве на большие расстояния практически невозможным. Учёные разработали гибкое метаволоконное устройство, способное генерировать оптические скирмионы с настраиваемыми топологическими текстурами и беспрецедентными характеристиками субволновой поляризации. Эта метаволоконная платформа включает метаструктуры непосредственно на кончиках волокна, что позволяет создавать структурированные световые поля с точно настраиваемыми топологическими характеристиками. Исследование опубликовано в журнале Nature Communications. В будущих работах могут быть изучены дополнительные функциональные возможности, такие как спиновые скирмионы и реконфигурируемые метаповерхности, основанные на фазовом изменении или двумерных материалах, что еще больше расширит сферу применения топологически спроектированных световых полей.

2024-12-03

Генерация высокоточных структурированных световых полей с помощью ультратонкого многомодового волокна с использованием фазового восстановления

Свет, передаваемый по оптическому волокну, искажается по мере распространения. Когда размер волокна приближается к ширине человеческого волоса, это искажение приводит к появлению явно случайного зернистого рисунка. Новые подходы по исправлению искажений приводят к несовершенным световым лучам, что делает их непригодными для микроскопии сверхвысокого разрешения или широкоугольной микроскопии. Команда учёных продемонстрировала, что можно заранее сформировать свет так, чтобы он мог генерировать любой желаемый оптический рисунок, даже после искажения. Метод, опубликованный в Advanced Optical Materials, обеспечивает беспрецедентный контроль над амплитудой, фазой и поляризацией луча на выходе волокна. В эксперименте были продемонстрированы проекции экзотических узоров света, таких как лучи Бесселя, лучи Эйри и лучи Лагерра-Гаусса, каждый из которых обладает уникальными свойствами, лежащими в основе современных методов микроскопии.

2024-11-19

Создан первый в мире синий полупроводниковый лазер с перестраиваемой длиной волны

Учёные из Университета Осаки создали первый в мире компактный синий полупроводниковый лазер с перестраиваемой длиной волны, что является значительным достижением в области технологии дальнего ультрафиолета с многообещающим применением в стерилизации и дезинфекции. Работа опубликована в журнале Applied Physics Express. Высокоэффективные устройства преобразования длины волны имеют очень узкую полосу пропускания, что делает одноволновые лазеры идеальными в качестве источников возбуждения. Кроме того, важны точный контроль длины волны и возможность ее настройки. Хотя сообщалось о нескольких одноволновых синих лазерах с грубой периодической структурой, ни один из них не достиг настраиваемого управления длиной волны. Лазер с перестраиваемой длиной волны колеблется в диапазоне 405 нм, но его структуру можно легко адаптировать и к диапазону 460 нм.

2024-11-12

Расширение запрещенной зоны по импульсу в фотонных кристаллах времени за счет резонансов

Международная исследовательская группа впервые разработала реалистичные фотонные кристаллы времени — экзотические материалы, которые экспоненциально усиливают свет. Этот прорыв открывает захватывающие возможности в таких областях, как связь, визуализация и зондирование, закладывая основу для более быстрых и компактных лазеров, датчиков и других оптических устройств. Исследование опубликовано в журнале Nature Photonics. В работе учёные предлагают с помощью теоретических моделей и электромагнитного моделирования первый практический подход к созданию "по-настоящему оптических" фотонных кристаллов времени. Используя массив крошечных кремниевых сфер, они предсказывают, что особые условия, необходимые для усиления света, которые ранее были недоступны, наконец-то могут быть достигнуты в лаборатории с использованием известных оптических методов.

2024-11-11

Контролируемый перенос атомов с помощью когерентного туннелирования между оптическими пинцетами

Экспериментальная установка, построенная на физическом факультете Техниона, демонстрирует перенос атомов из одного места в другое посредством квантового туннелирования между оптическими пинцетами. Исследование, проведенное профессором Йоавом Саги и докторантом Янаем Флоршаймом из Института твердого тела, было опубликовано в журнале Science Advances. В основе эксперимента лежит оптический пинцет — экспериментальный инструмент для захвата атомов, молекул и даже живых клеток с помощью оптического потенциала, создаваемого лазерными лучами, сфокусированными в пятне микронного размера.


PhysReal • Физическая реальность

Администрация не несет ответственности за достоверность информации, опубликованной в рекламных объявлениях. Материалы, опубликованные в блогах, отражают позиции их авторов, которые могут не совпадать с мнением редакции. Использование публикаций сайта разрешается при наличии прямой ссылки на PhysReal.
Контактный E-mail:

Telegram: https://t.me/physreal
ВКонтакте: https://vk.com/physreal
RSS (XML): Новости физики

Copyright © 2025 Development by Programilla.com