2023-03-10

Световые импульсы могут вести себя как экзотический газ

В работе, опубликованной в журнале Science, группа под руководством профессора доктора Ульфа Пешеля сообщает об измерениях последовательности импульсов, которые проходят тысячи километров по стеклянным волокнам толщиной всего в несколько микрон. Исследователи были удивлены результатами. «Мы обнаружили, что световые импульсы организуются примерно через сотню километров, а затем ведут себя больше как молекулы обычного газа, такого как, например, воздух», — сообщает профессор Ульф Пешель, руководитель группы в Йене.

2023-03-10

Субпикосекундное перемагничивание в спиновых клапанах без редкоземельных элементов

Исследователи из Университета Лотарингии во Франции и Университета Тохоку в Японии продемонстрировали субпикосекундное перемагничивание в архетипических спиновых клапанах без редкоземельных элементов. Их открытие было опубликовано в журнале Nature Materials 9 марта 2023 года.

2023-03-07

Визуализация через случайные среды с использованием когерентного усреднения

Недавнее исследование, связанное с UNIST, представило эффективный метод восстановления изображений, искаженных туманом. По словам исследовательской группы, их метод также может обеспечить прорыв, используя случайные флуктуации для реконструкции изображений с ограничением дифракции через живые ткани. Было показано, что путем простого ансамблевого усреднения изображений с поправкой на сдвиг можно точно восстановить фазу Фурье объекта, скрытого случайными искажениями, вплоть до дифракционного предела. Этот прорыв, опубликованный в журнале Laser & Photonics Reviews, был осуществлен под руководством профессора Юнг-Хуна Пака с кафедры биомедицинской инженерии UNIST.

2023-03-07

Когерентное фонон-индуцированное гигагерцовое оптическое двулучепреломление, реализованное в титанате стронция

Используя сверхбыструю технологию обнаружения накачки с временным разрешением, исследователи под руководством профессора Шэна Чжигао из Института физических наук Хэфэя (HFIPS) Китайской академии наук осуществили модуляцию двойного лучепреломления на гигагерцовой (ГГц) частоте, индуцированную сверхбыстрыми когерентными фононами в титанате стронция (SrTiO3). По словам исследователей, рабочая частота оказалась намного выше частоты среза коммерчески доступных фотоупругих модуляторов. Исследование было опубликовано в Advanced Science.

2023-03-06

Обнаружение информации о молекулярных вибрациях быстрее и лучше за счёт растягивания времени

Благодаря профессору Идегучи и его команде из Токийского университета теперь стало возможным получать высокоскоростные спектральные данные с высоким разрешением. Команда разработала метод инфракрасной спектроскопии с растяжением во времени с преобразованием с повышением частоты (UC-TSIR), который может измерять инфракрасные спектры с 1000 спектральными элементами со скоростью 10 миллионов спектров в секунду. Работа опубликована в журнале Light: Science & Applications.

2023-03-06

Охлаждение наночастицы в основном состоянии вдоль двух направлений движения

Работа, опубликованная в журнале Nature Physics, демонстрирует возможность достижения минимального энергетического состояния для трех направлений движения. Это также позволяет создавать хрупкие квантовые состояния в двух направлениях, которые можно использовать для создания сверхчувствительных гироскопов и датчиков.

2023-03-06

Исследователи достигли невзаимного преобразования частоты с помощью оптического и механического режимов

Недавно исследовательская группа под руководством профессора Го Гуанцана из Университета науки и технологий Китая (USTC) продемонстрировала невзаимную маршрутизацию между любыми двумя модами с разными частотами за счет силы радиационного давления с использованием двух оптических мод и двух механических мод в микрорезонаторе. Их работа была опубликована в Physical Review Letters.

2023-03-06

Одноимпульсная планарная визуализация в режиме реального времени с частотой миллиард кадров в секунду сверхбыстрой динамики лазера наночастиц и температуры в пламени

Сажа, образующаяся в результате несгоревшего углеводородного пламени, является вторым по величине фактором глобального потепления, а также наносит вред здоровью человека. Исследователи разработали современные высокоскоростные методы визуализации для изучения турбулентного пламени, однако они ограничены скоростью визуализации миллионов кадров в секунду. Поэтому физики стремятся получить полную картину взаимодействия пламенного лазера с помощью одноимпульсной визуализации. Они использовали Однозарядный лазерный лист, который впервые включал сверхбыструю съемку на миллиард кадров в секунду для наблюдения за динамикой лазерного пламени.

2023-03-03

Междисциплинарное решение для улучшения изображений с высоким разрешением в электронной и оптической микроскопии

Хотя электронная микроскопия уже может выявить детали размером до одного нанометра, текущие исследования направлены на преодоление барьеров, ограничивающих качество изображения и снижающих оптическую дозу на образцах. Аберрация — распространенная проблема в электронной микроскопии, которая может снизить разрешение и качество получаемых изображений. Был разработан и протестирован новый алгоритм создания фантомных изображений, обнаружив, что можно создавать изображения с улучшенным разрешением и контрастностью, используя освещение с более низким потоком, что может уменьшить повреждение образца. Исследование было опубликовано 21 декабря в журнале Intelligent Computing.

2023-03-01

Новый метод обеспечивает эффективную оптическую связь в свободном пространстве независимо от погоды

В недавно опубликованном исследовании доцент кафедры физики, прикладной физики и астрономии из Политехнического института Ренсселера Мусса Н'Гом и его команда использовали сверхбыстрые фемтосекундные лазеры, чтобы прорезать облака и дождь, которые обычно вызывают потери в оптической связи в свободном пространстве (FSO). Н'Гом использовал структурированный свет в форме спирали с отверстием в центре для распространения по пути.


PhysReal • Физическая реальность

Администрация не несет ответственности за достоверность информации, опубликованной в рекламных объявлениях. Материалы, опубликованные в блогах, отражают позиции их авторов, которые могут не совпадать с мнением редакции. Использование публикаций сайта разрешается при наличии прямой ссылки на PhysReal.
Контактный E-mail:

Telegram: https://t.me/physreal
ВКонтакте: https://vk.com/physreal
RSS (XML): Новости физики

Copyright © 2024 Development by Programilla.com