2024-07-08

Получен симулятор обращения времени для квантовой эволюции

Исследовательская группа построила когерентную суперпозицию квантовой эволюции с двумя противоположными направлениями в фотонной системе и подтвердила ее преимущество в характеристике неопределенности ввода-вывода. Исследование было опубликовано в Physical Review Letters. Учёные построили класс процессов квантовой эволюции в фотонной установке, расширив обращение времени до инверсии входа-выхода квантового устройства. При замене входных и выходных портов квантового устройства полученная эволюция удовлетворяет свойствам обращения времени исходной эволюции, тем самым получая симулятор обращения времени для квантовой эволюции. Далее физики квантовали направление времени эволюции, достигнув когерентной суперпозиции квантовой эволюции и ее обратной эволюции. Они также охарактеризовали структуры, используя методы квантового свидетеля.

2024-07-08

Мультиплексные полностью оптические операции перестановки с использованием реконфигурируемой дифракционной оптической сети

Инженеры Калифорнийского университета в Лос-Анджелесе (UCLA) представили крупное достижение в области оптических вычислительных технологий, которое обещает улучшить обработку и шифрование данных. Работа опубликована в журнале Laser & Photonics Reviews. Используя внутренние свойства света, исследование представляет новый метод выполнения многомерных операций перестановки с помощью мультиплексированной дифракционной оптической сети. В экспериментальной установке используется реконфигурируемый мультиплексный материал, структурированный с использованием алгоритмов глубокого обучения. Каждый дифракционный слой в сети может вращаться в четырех ориентациях: 0°, 90°, 180° и 270°. Это позволяет вращающемуся дифракционному материалу K-слоя выполнять до 4 в степени K независимых операций перестановки, что делает его универсальным. Исходные входные данные можно расшифровать, применив специальную матрицу обратной перестановки, что гарантирует безопасность данных.

2024-07-06

Визуализация магнитных полей в атомном масштабе с помощью голографического электронного микроскопа

Исследовательская группа из Японии, в которую входят ученые из Hitachi, Ltd. (TSE 6501, Hitachi), Университета Кюсю, RIKEN и HREM Research Inc. (HREM), достигла крупного прорыва в наблюдении магнитных полей в невообразимо малых масштабах. В сотрудничестве с Национальным институтом передовой промышленной науки и технологий (AIST) и Национальным институтом материаловедения (NIMS) группа использовала голографический электронный микроскоп атомного разрешения Hitachi с недавно разработанной технологией получения изображений и алгоритмами коррекции расфокусировки для визуализации магнитных полей отдельных атомных слоев в кристаллическом твердом теле. Учёные провели измерения электронной голографии на образцах Ba2FeMoO6, слоистого кристаллического материала, в котором соседние атомные слои имеют различные магнитные поля. Сравнив результаты своих экспериментов с результатами моделирования, они подтвердили, что превзошли ранее установленный рекорд, сумев наблюдать магнитные поля с беспрецедентным разрешением 0,47 нм.

2024-07-04

6-я Международная научная конференция ведущих научных школ в области радиолокации, радионавигации и радиоэлектронных систем передачи информации "Шарыгинские чтения"

9 октября 2024 г. — 11 октября 2024 г., срок заявок: 25 сентября 2024 г. Россия, Томск (издание включено в: РИНЦ). Форма участия: очно-заочная. Язык информации: русский. 9-11 октября 2024 г. Томский государственный университет систем управления и радиоэлектроники проводит Шестую международную научную конференцию ведущих научных школ в области радиолокации, радионавигации и радиоэлектронных систем передачи информации «Шарыгинские чтения». К участию в конференции «Шарыгинские чтения» приглашаются ученые и специалисты предприятий и организаций в области радиолокации, радионавигации и радиоэлектронных систем передачи информации, преподаватели, научные сотрудники, аспиранты и студенты высших учебных заведений России.

2024-07-04

XX Международная научно-практическая конференция "Электронные средства и системы управления"

20 ноября 2024 г. — 22 ноября 2024 г., срок заявок: 20 сентября 2024 г. Россия, Томск (издание включено в: РИНЦ). Форма участия: очно-заочная. Язык информации: русский. Приглашаем принять участие в работе Международной научно-практической конференции «Электронные средства и системы управления». Конференция будет проходить 20-22 ноября 2024 г. К участию в работе конференции приглашаются сотрудники высших учебных заведений и научно-исследовательских институтов, в том числе аспиранты и студенты (в соавторстве со старшими коллегами), а также представители организаций и фирм, занятых в сфере наукоемкого бизнеса. Материалы докладов будут опубликованы в сборниках конференции. Сборники материалов конференции выходят после конференции и размещаются на сайте конференции в разделе «Архив». Сборникам материалов конференции присваивается ISBN. Сборники материалов конференции, включены в Российский индекс научного цитирования (РИНЦ). Лучшие доклады, отобранные программным комитетом, будут рекомендованы к публикации в журнале «Доклады Томского государственного университета систем управления и радиоэлектроники» («Доклады ТУСУР») в расширенной версии. Лучшие докладчики по итогам работы секций конференции будут награждены дипломами конференции, все очные участники конференции получат сертификаты.

2024-07-01

Управляемые Андреевские связанные состояния в двухслойных графеновых джозефсоновских переходах от коротких до длинных пределов перехода

Исследователи успешно контролировали квантово-механические свойства связанных состояний Андреева в двухслойных графеновых переходах Джозефсона с использованием напряжения затвора. Статья опубликована в Physical Review Letters. В этой работе исследовательская группа использовала напряжение на затворе для управления квадратичной дисперсией энергии двухслойного графена, а также длиной сверхпроводящей когерентности в реальном времени. Используя туннельную спектроскопию, разработанную в их предыдущей работе, они наблюдали изменение связанных состояний Андреева при различных напряжениях на затворе в реальном времени и подтвердили, что экспериментальные результаты соответствуют теоретическим предсказаниям.

2024-07-01

Рекордная подвижность электронов в новой кристаллической пленке

Физики из Массачусетского технологического института, Армейской исследовательской лаборатории и других организаций достигли рекордного уровня подвижности электронов в тонкой пленке тройного тетрадимита — класса минералов, который естественным образом встречается в глубоких гидротермальных месторождениях золота и кварца. Команда смогла оценить подвижность электронов материала, обнаружив квантовые колебания при прохождении через него электрического тока. Исследователи обнаружили особый ритм колебаний, характерный для высокой подвижности электронов — выше, чем у любых тройных тонких пленок этого класса на сегодняшний день. Результаты, опубликованные в журнале Materials Today Physics, указывают на тонкие пленки тройного тетрадимита как на многообещающий материал для будущей электроники, например, для носимых термоэлектрических устройств, которые эффективно преобразуют отходящее тепло в электричество.

2024-06-26

Определение показателя преломления на релятивистских скоростях

Учёные определили механический показатель преломления путем сравнения волнового уравнения Гельмгольца для света в оптической среде и независимого от времени уравнения Клейна-Гордона для релятивистской частицы в потенциале. Расчеты механического показателя преломления для частиц, движущихся с разными скоростями, вплоть до скорости света, точно совпадают с результатом Декарта в нерелятивистском пределе и результатом Ферма в ультрарелятивистском пределе.

2024-06-26

Экспериментальное исследование полей потока вблизи движущейся линии контакта жидкость-жидкость

В исследовании, опубликованном в Европейском физическом журнале Special Topics, Хариш Диксит из Индийского технологического института Хайдарабада и его коллеги изучают движение линии контакта, образующейся на границе раздела двух несмешивающихся жидкостей и твердого тела. Эксперименты заполняют пробел в гидродинамике и предлагают механизм наложенных граничных условий, который ускользает от математического описания. Учёные заполнили прямоугольный резервуар двумя слоями жидкости — силиконовым маслом поверх сахарной воды — с одинаковой плотностью, но значительно разной вязкостью. Исследователи поместили предметное стекло на край резервуара, которое они могли перемещать вертикально, создавая движущуюся линию контакта. Используя технику, которая отслеживает крошечные частицы, попавшие в жидкости и освещенные лазерным светом, исследователи одновременно нанесли на карту поле потока по обе стороны границы раздела жидкость-жидкость, перемещая предметное стекло. Они обнаружили, что скорости потока быстро уменьшались вблизи линии контакта. Кроме того, граница раздела жидкости, казалось, скользила по движущемуся предметному стеклу, а не оставалась прижатой к нему, что устраняло кажущуюся «сингулярность» в моделях, которые накладывают граничные условия, препятствующие скольжению, на движущейся стенке.

2024-06-26

Впервые удалось однократно диагностировать ускорение электронов через лазерный кильватерный ускоритель по криволинейной траектории

Согласно недавнему исследованию, проведенному исследователями Мичиганского университета, корректировка экспериментальных методов позволила впервые "однократно" диагностировать ускорение электронов через лазерный кильватерный ускоритель по криволинейной траектории. Результаты опубликованы в журнале Physical Review Letters. Устройство запускает лазер через пар, создавая ионизированную плазму, а затем отделяет электроны от ионов, создавая "след за собой", похожий на след, который оставляет лодка, двигаясь по воде. Затем вводится электронный луч в ускоритель, который "плывет" по следу, быстро набирая энергию. Свойства фотонов, а именно энергии фотонов и угловое распределение, полностью определяются свойствами электронного пучка. Таким образом, измерив свойства пространственно разрешенного фотона, исследователи смогли собрать воедино процесс ускорения электронов на основе одного эксперимента.


PhysReal • Физическая реальность

Администрация не несет ответственности за достоверность информации, опубликованной в рекламных объявлениях. Материалы, опубликованные в блогах, отражают позиции их авторов, которые могут не совпадать с мнением редакции. Использование публикаций сайта разрешается при наличии прямой ссылки на PhysReal.
Контактный E-mail:

Telegram: https://t.me/physreal
ВКонтакте: https://vk.com/physreal
RSS (XML): Новости физики

Copyright © 2025 Development by Programilla.com