2024-03-29

Сильно связанные спиновые волны и поверхностные акустические волны при комнатной температуре

При комнатной температуре удалось создать сильную связь между двумя формами волн в тонкой пленке — магнонами и фононами. Так как обычные звуковые волны на поверхностях плохо связываются с магнитами, то были использованы поперечные звуковые волны, которые лучше для этого подходят. В эксперименте был использован наноструктурный резонатор поверхностных акустических волн, который ограничивает ультразвуковые волны в определенном месте и усиливает поперечные звуковые волны, обеспечивая сильную связь между поверхностными звуковыми волнами и магнитами в резонаторе. Благодаря этому исследователям удалось добиться сильной магнитно-звуковой связи в пленке Co20Fe60B20 при комнатной температуре.

2023-09-13

Новая система уравнений предсказывает гидродинамическое поведение магнонов в магните

Недавние исследования железосодержащих магнитных изоляторов в сверхчистых системах привлекли все большее внимание к гидродинамическому поведению «магнонов» и их сильным взаимодействиям с другими частицами. Изучения рассеиваемых магнонов и тепловых токов показали значительное отклонение от ожиданий, основанных на стандартном магнитном "законе Видмана-Франца". Группа учёных во главе с Киотским университетом и Институтом теоретических наук Кавли в Пекине сформулировала новый набор уравнений, которые могут предсказать эту разницу между обычными токами, переносимыми магнонами в магнитной среде. Статья «Нарушение магнонного закона Видемана-Франца в гидродинамическом режиме», опубликованная в журнале Physical Review Letters.

2023-05-05

Высокопроизводительное устройство для когерентного микроволнового излучения и усиления на основе поляритона

Исследователи из Университета Манитобы недавно разработали высокоэффективное устройство на основе магнонных поляритонов резонатора, которое может излучать и усиливать микроволны. Было обнаружено, что это устройство, представленное в Physical Review Letters, значительно превосходит ранее предложенные твердотельные устройства для когерентного микроволнового излучения и усиления при комнатной температуре.

2023-04-05

Гибридная магноника в гибридных перовскитных антиферромагнетиках

Международная группа исследователей создала смешанное магнонное состояние в органическом гибридном материале перовскита, используя взаимодействие Дзялошинского-Мория (DMI). Полученный материал имеет потенциал для обработки и хранения информации о квантовых вычислениях. Работа также расширяет количество потенциальных материалов, которые можно использовать для создания гибридных магнонных систем. Работа опубликована в Nature Communications.

2023-01-17

Новый оптический метод проверки топологических фаз в магнитных материалах

Исследователи проанализировали свет, рассеянный материалом, и показали, что если интенсивность рассеяния различна для двух поляризаций, материал находится в топологической фазе. И наоборот, если нет разницы в интенсивности рассеянного света, то материал не находится в топологической фазе. Таким образом, свойства рассеянного света служат четкими индикаторами топологических фаз в этих магнитных материалах. Исследование опубликовано в журнале Physical Review Letters.

2022-09-23

Гигантская проводимость спиновых волн магнонов в сверхтонких изоляторах

Когда вы делаете токопроводящие провода тоньше, их электрическое сопротивление увеличивается. Это закон Ома, и в целом он верен. Важным исключением являются очень низкие температуры, когда подвижность электронов увеличивается, когда провода становятся настолько тонкими, что фактически становятся двумерными. Теперь физики Гронингенского университета вместе с коллегами из Брестского университета наблюдали, что нечто подобное происходит с проводимостью магнонов, спиновыми волнами, которые проходят через магнитные изоляторы, подобно волне, проходящей через стадион. Увеличение проводимости было впечатляющим и происходило при комнатной температуре. Это наблюдение было опубликовано в Nature Materials 22 сентября.

2022-05-30

Когерентные колебания между фононами и магнонами

В новом отчете, опубликованном в Nature Communications Physics, Томосато Хиоки и группа ученых, занимающихся исследованием материалов и прикладной физикой из Университета Тохоку и Токийского университета в Японии, описали когерентные биения, наблюдаемые между различными видами возбуждения в твердом теле, а именно фононами — квантовая колебательно-механическая энергия и магноны — квазичастица, представляющая собой коллективное возбуждение спиновой структуры электрона.


PhysReal • Физическая реальность

Администрация не несет ответственности за достоверность информации, опубликованной в рекламных объявлениях. Материалы, опубликованные в блогах, отражают позиции их авторов, которые могут не совпадать с мнением редакции. Использование публикаций сайта разрешается при наличии прямой ссылки на PhysReal.
Контактный E-mail:

Telegram: https://t.me/physreal
ВКонтакте: https://vk.com/physreal
RSS (XML): Новости физики

Copyright © 2024 Development by Programilla.com