2023-01-26

Физики впервые наблюдают квазичастицы в классических системах

Идея квазичастиц была введена советским физиком Львом Ландау в 1941 году и с тех пор приносила большие плоды в исследованиях квантовой материи. Некоторые примеры квазичастиц включают боголюбовские квазичастицы (разорванные куперовские пары) в сверхпроводимости, экситоны в полупроводниках и фононы. Но мнение о том, что квазичастицы относятся исключительно к квантовой материи, недавно было оспорено группой исследователей из Центра мягкой и живой материи (CSLM) Института фундаментальных наук (IBS) в Южной Корее. Они исследовали классическую систему, состоящую из микрочастиц, движимых вязким потоком в тонком микрожидкостном канале. Поскольку частицы увлекаются потоком, они возмущают линии тока вокруг себя, тем самым воздействуя гидродинамическими силами друг на друга.

2023-01-17

Механизм нестабильности периодического движения пузырьков в парадоксе Леонардо да Винчи из Лестерского кодекса

Профессор Мигель Анхель Эррада из Университета Севильи и профессор Йенс Г. Эггерс из Бристольского университета открыли механизм, объясняющий нестабильное движение пузырьков, поднимающихся в воде. По словам исследователей, результаты, которые опубликованы в журнале PNAS, могут быть полезны для понимания движения частиц, поведение которых является промежуточным между твердым телом и газом. Исследователи предлагают механизм нестабильности траектории пузыря, при котором периодическое наклонение пузыря изменяет его кривизну, тем самым влияя на восходящую скорость и вызывая колебание траектории, наклоняя сторону пузыря, чья кривизна увеличилась. Затем, когда жидкость движется быстрее и давление жидкости падает вокруг поверхности с большой кривизной, дисбаланс давления возвращает пузырек в исходное положение, перезапуская периодический цикл.

2022-12-13

Наблюдение за слиянием капель воды на Международной космической станции

В области физики жидкостей исследователи из Корнельского университета и Университета Клемсона разработали и проанализировали эксперименты с каплями, которые проводились на Международной космической станции. «Если капли становятся намного больше, они начинают терять свою сферическую форму, и гравитация превращает их в нечто, больше похожее на лужи», — сказал автор Джош МакКрейни из Корнельского университета. «Если мы хотим анализировать капли на Земле, нам нужно делать это в очень малых масштабах». Меньшая гравитация в космосе означает, что команда может исследовать более крупные капли, от пары миллиметров в диаметре до 10-кратной длины.

2022-12-12

Гидродинамические свойства улучшают моделирование броуновской динамики

Исследователи из Института промышленных наук Токийского университета добавили влияние гидродинамики, которая включает свойства потока и сжимаемости воды, к компьютерному моделированию взвешенных заряженных частиц в электрическом поле. Они обнаружили, что это значительно улучшило предсказания окончательных структур по сравнению с обычными вычислительными моделями. Эта работа может помочь объяснить, как гидродинамические взаимодействия влияют на самоорганизацию взвешенных в растворе частиц, в том числе в биологических системах, таких как клетки. Исследование опубликовано в журнале Physical Review Letters.

2022-12-09

Новый математический метод позволяет лучше моделировать многофазные жидкости

Исследователи разработали математический метод, который радикально снижает огромные вычислительные затраты на моделирование жидкостей, сочетающих жидкую и газовую фазы, особенно в ракетных двигателях. Вычислительная нагрузка такого рода моделирования уже давно ставит перед исследователями задачу точного описания того, как ударные волны в таких многофазных жидкостях вызывают износ механизмов. Техника описана в статье, опубликованной в Journal of Computational Physics.

2022-11-07

Умный метод разделения нанокомпонентов

Физики из Университета Фридриха Шиллера в Йене вместе с коллегами из Дюссельдорфа, Гетеборга, Люнгбю и Триеста разработали гениальное решение для разделения связанных нанокомпонентов. Их идея состоит в том, чтобы погружать нанокомпоненты в растворитель вблизи его критической точки. В экспериментальной установке им удалось контролируемо разделить компоненты, лишь изменив температуру растворителя.

2022-09-23

Циклоны, вращающиеся вокруг полюсов Юпитера, до сих пор сбивают с толку

Группа космических ученых, связанных с несколькими институтами в США, работающая с коллегой из Италии и еще одним из Франции, использовала моделирование, чтобы частично объяснить устойчивость циклонов, вращающихся вокруг полюсов Юпитера. В своей статье, опубликованной в журнале Nature Astronomy, группа описывает, как они анализировали изображения, полученные космическим зондом «Юнона», и использовали полученные знания для создания моделей мелководья, которые могли бы хотя бы частично объяснить, почему циклоны существуют так долго.

2022-08-31

Динамика кавитации в мягком пористом материале

В новом исследовании, опубликованном в PNAS Nexus, Гомес, Влахос и их сотрудники представили разработку математической модели для описания динамики кавитационных пузырьков в деформируемой пористой среде. Гомес и его сотрудники разработали теоретическую и вычислительную модель, показывающую, что деформируемость пористого материала замедляет схлопывание и расширение кавитационных пузырьков. Это нарушает классическое соотношение масштабирования между размером пузырька и временем.

2022-08-30

Физики открыли новую динамическую основу турбулентности

Физики из Технологического института Джорджии продемонстрировали — численно и экспериментально — что турбулентность можно понять и количественно оценить с помощью относительно небольшого набора специальных решений основных уравнений гидродинамики, которые можно предварительно вычислить для конкретной геометрии, раз и навсегда. Результаты были опубликованы в Proceedings of the National Academy of Sciences 19 августа 2022 года. Группу исследователей возглавляли Григорьев и Майкл Шац, профессора Школы физики Технологического института Джорджии, которые сотрудничали в различных исследовательских проектах в течение последних двух десятилетий.

2022-08-18

Новая модель описывает затяжки, пробки и роль случайности в переходной турбулентности

Группа ученых из Университета Иллинойса в Урбана-Шампейн, Калифорнийского университета в Сан-Диего и Академии Синика на Тайване показала, как объяснить случайные закономерности и динамику турбулентности в трубах в переходном режиме. В их работе используются новые идеи, зародившиеся в таких разрозненных областях, как статистическая механика и экология, и она основана на растущих доказательствах того, что ламинарно-турбулентный переход обладает статистическими свойствами, которые лучше всего рассматривать в рамках теории неравновесных фазовых переходов. Авторы опубликовали свои результаты 11 июля 2022 года в журнале Physical Review Letters.


PhysReal • Физическая реальность

Администрация не несет ответственности за достоверность информации, опубликованной в рекламных объявлениях. Материалы, опубликованные в блогах, отражают позиции их авторов, которые могут не совпадать с мнением редакции. Использование публикаций сайта разрешается при наличии прямой ссылки на PhysReal.
Контактный E-mail:

Telegram: https://t.me/physreal
ВКонтакте: https://vk.com/physreal
RSS (XML): Новости физики

Copyright © 2024 Development by Programilla.com