2022-08-24

Продемонстрирован способ усиления излучения молекул, следующего за возбуждением

Если молекулы облучаются лазерным светом, они начинают характерно вибрировать, а также излучают свет. Однако при низких концентрациях это излучение очень слабое. Группа ученых во главе с приват-доцентом доктором Иоахимом Пупеза в составе команды Мюнхенского университета Людвига-Максимилиана (LMU) и Института квантовой оптики имени Макса Планка (MPQ) в сотрудничестве с учеными из Университета Британской Колумбии и Института Лейбница. Институт фотонных технологий в Йене в настоящее время демонстрирует способ усиления излучения молекул, следующего за возбуждением, что значительно улучшает «обоняние» молекулярной лазерной спектроскопии.

2022-08-18

Изучение путей квантовых электронов с помощью лазерного света

Топологические изоляторы, или ТИ, имеют две стороны: электроны свободно текут вдоль краев их поверхности, как автомобили на супермагистрали, но вообще не могут проходить через внутреннюю часть материала. Исследователи из Национальной ускорительной лаборатории SLAC Министерства энергетики и Стэнфордского университета систематически исследовали «фазовый переход», при котором TI теряет свои квантовые свойства и становится обычным изолятором. Они сделали это, используя спиралевидные лучи лазерного света для создания гармоник — очень похожих на вибрации щипковой гитарной струны — из исследуемого материала. Эти гармоники позволяют легко отличить то, что происходит в слое супермагистрали, от того, что происходит внутри, и увидеть, как одно состояние сменяется другим, сообщили они сегодня в Nature Photonics.

2022-08-16

Филаментация сапфирового фемтосекундного лазера в аргоне с частотой повторения 1 кГц

В данной работе экспериментально исследовано влияние частиц окружающего газа на эффективность терагерцовой генерации с помощью двухцветной лазерной филаментации. Экспериментальные результаты показывают, что наибольшая эффективность преобразования ТГц излучения достигается в аргоне. Также была исследована взаимосвязь между углом наклона. α-BBO и генерируемой ТГц мощностью в аргоне α-BBO с оптимальным углом наклона и заданной толщиной может одновременно компенсировать временную задержку и пространственное отклонение двухцветных лазерных лучей, играя решающую роль в повышении эффективности генерации терагерцовой волны.

2022-08-01

Впервые измерено состояние связи света и материи

В лаборатории впервые было создано особое состояние связи между атомами: с помощью лазерного луча атомы можно поляризовать так, чтобы они были заряжены положительно с одной стороны и отрицательно заряжены с другой. Это заставляет их притягиваться друг к другу, создавая совершенно особое состояние связи — намного слабее, чем связь между двумя атомами в обычной молекуле, но все же измеримую. Притяжение исходит от самих поляризованных атомов, но именно лазерный луч дает им возможность это делать — в некотором смысле, это «молекула» света и материи.

2022-06-30

Лазер создает миниатюрную магнитосферу

Магнитные пересоединения в лазерной плазме были изучены для понимания микроскопической динамики электронов, которая применима к космическим и астрофизическим явлениям. Исследователи Университета Осаки в сотрудничестве с исследователями из Национального института термоядерной науки и других университетов сообщили о прямых измерениях исходящих потоков чистых электронов, имеющих отношение к магнитному пересоединению, с использованием мощного лазера Gekko XII в Институте лазерной инженерии, Осака. Университет в Японии. Их выводы опубликованы в Scientific Reports.

2022-06-29

Новый одномодовый полупроводниковый лазер обеспечивает мощность с масштабируемостью

Инженеры Беркли создали новый тип полупроводникового лазера, который достигает неуловимой цели в области оптики: способность поддерживать одну моду излучаемого света, сохраняя при этом возможность увеличения размера и мощности. Это достижение означает, что размер не должен достигаться за счет когерентности, что позволяет лазерам быть более мощными и покрывать большие расстояния для многих приложений.

2022-06-28

Лазерное ударное сжатие разрывает самые прочные химические связи

Ученые Ливерморской национальной лаборатории имени Лоуренса (LLNL) недавно получили высокоточные термодинамические данные о теплом плотном азоте в экстремальных условиях, которые могут помочь лучше понять внутреннее устройство небесных объектов, таких как белые карлики и экзопланеты.

2022-06-15

Физики совершили прорыв в считывании кубитов с помощью лазерного излучения

Кубиты являются основным строительным блоком для квантовых компьютеров, но они также известны своей хрупкостью — их сложно наблюдать, не стирая при этом их информацию. Теперь новое исследование Университета Колорадо в Боулдере и Национального института стандартов и технологий (NIST) может стать шагом вперед для обработки кубитов легким прикосновением. В ходе исследования группа физиков продемонстрировала, что она может считывать сигналы от типа кубита, называемого сверхпроводящим кубитом, с помощью лазерного света и в то же время не разрушая кубит.

2022-06-14

Сверхбыстрые лазеры используются для исследования солнечных элементов следующего поколения

Исследователи отследили первые доли секунды после того, как свет падает на солнечные элементы, что дало представление о том, как они производят электричество.

2022-06-07

Первое в мире измерение вынужденного излучения, зависящего от магнитного поля

В медицине измеряют магнитные поля сердечной и мозговой деятельности для выявления заболеваний на ранней стадии. Чтобы измерить даже самые маленькие магнитные поля, исследователи из Fraunhofer IAF работают над новым подходом: пороговой магнитометрией на основе алмазного лазера. Идея состоит в том, чтобы использовать алмаз с высокой плотностью азотно-вакансионных центров в лазерной системе. Теперь исследователям удалось достичь важной вехи: им удалось продемонстрировать первое в мире измерение вынужденного излучения, зависящего от магнитного поля, и даже установить новый рекорд контрастности. Результаты были опубликованы в журнале Science Advances


PhysReal • Физическая реальность

Администрация не несет ответственности за достоверность информации, опубликованной в рекламных объявлениях. Материалы, опубликованные в блогах, отражают позиции их авторов, которые могут не совпадать с мнением редакции. Использование публикаций сайта разрешается при наличии прямой ссылки на PhysReal.
Контактный E-mail:

Telegram: https://t.me/physreal
ВКонтакте: https://vk.com/physreal
RSS (XML): Новости физики

Copyright © 2024 Development by Programilla.com