2024-06-07

Терагерцовая спектроскопия без Фурье

Исследователи из физического факультета МГУ им. М.В. Ломоносова предложили модификацию метода терагерцовой спектроскопии, позволяющую обойти паразитные пики в преобразовании Фурье, связанные с отражением волны от границ материала или слоев внутри материала, что ухудшает качество исследования, если изучаемой средой являются пленки или слоистые структуры. Модификация метода основана на том, что сравниваются не фурье-образы, а амплитуды временных зависимостей электромагнитного поля. Чтобы увидеть вклад материальных констант образца, необходим дополнительный световой импульс. Исходный луч фемтосекундного лазера делится не на две, а на три составляющие: генерирующая, детектирующая и фотоиндуцирующая. Генерирующий импульс попадает на нелинейный кристалл, где он преобразуется в терагерцовое излучение, и затем освещает исследуемый образец. Фотоиндуцирующий импульс, прошедший через пространственный модулятор, падает на исследуемый образец, формируя в его области неоднородную засветку в виде дифракционной решетки, период которой обеспечивает дифракцию терагерцового излучения. В результате взаимодействия фотоиндуцирующего импульса с образцом в тех областях материала, куда попадает засветка, изменяется концентрация свободных носителей, или возбуждаются поляритоны, и при прохождении терагерцового импульса образуется импульс-сателлит. Отношение амплитуд детектирующего импульса и импульса-сателлита, с учетом известного периода дифракционной решетки, дает возможность определять материальные константы образца.

2024-05-31

Разработан новый тип голограмм, способный проецировать несколько изображений высокой точности без перекрестных помех

Исследователи разработали новый тип голограмм, известный как «метаголограммы», способный проецировать несколько изображений высокой точности без перекрестных помех. Этот прорыв открывает путь к технологиям следующего поколения, включая дисплеи виртуальной/дополненной реальности (AR/VR), хранение информации и шифрование изображений. Работа опубликована в журнале eLight. Предлагаемая метаголограмма использует метод геометрического фазового кодирования и состоит из миллионов поликремниевых наностолбиков субволнового масштаба, каждый размером примерно 100 нм, идентичных по размеру, но с пространственно изменяющимися углами вращения. Устройство также включает в себя плоский стеклянный волновод для передачи падающего света и использует такие свойства, как поляризация и угол, для переключения проекции до шести уникальных изображений высокой четкости без перекрестных помех. Кроме того, исследователи создали двухканальную полноцветную метаголограмму и даже восемнадцатиканальную метаголограмму, используя комбинацию различных методов мультиплексирования.

2024-05-31

Сверхбыстрый волномер на основе многомодовых и многосердцевинных волокон, использующий спектрально-пространственно-временное картирование

В новой статье, опубликованной в журнале Light: Advanced Manufacturing, группой ученых был разработан сверхбыстрый волномер на основе многомодовых и многосердцевинных волокон, который использует спектрально-пространственно-временное картирование. Благодаря объединению характеристик спекл-структуры многомодовых волокон с возможностями выборки многожильных волокон этот новый метод обеспечивает скорость спектральных измерений 100 МГц при сохранении высокого разрешения 14,7 мкм и без ущерба для точности.

2024-05-20

Обнаружен дефект одного атома в 2D-материале, который может хранить квантовую информацию при комнатной температуре

Ученые обнаружили, что «одиночный атомный дефект» в слоистом 2D-материале может удерживать квантовую информацию в течение микросекунд при комнатной температуре. Дефект, обнаруженный исследователями из университетов Манчестера и Кембриджа с использованием тонкого материала под названием гексагональный нитрид бора (hBN), демонстрирует спиновую когерентность — свойство, при котором электронный спин может сохранять квантовую информацию — в условиях окружающей среды. Они также обнаружили, что этими вращениями можно управлять с помощью света.

2024-05-15

Физики из Гарварда продемонстрировали самое длинное в мире расстояние между двумя узлами квантовой памяти

Команда физиков из Гарварда разработала практические основы первого квантового Интернета, соединив два узла квантовой памяти, разделенные оптоволоконной линией, развернутой по кольцу длиной примерно 22 мили через Кембридж, Сомервилл, Уотертаун и Бостон. Два узла располагались этажом друг от друга в Гарвардской лаборатории комплексной науки и техники. Каждый узел представляет собой очень маленький квантовый компьютер, сделанный из кусочка алмаза, имеющего дефект в атомной структуре, называемый центром кремниевых вакансий. Внутри алмаза резные структуры размером менее одной сотой ширины человеческого волоса усиливают взаимодействие между центром кремниевой вакансии и светом. Центр кремниевых вакансий содержит два кубита, или бита квантовой информации: один в форме электронного спина, используемого для связи, а другой в виде более долгоживущего ядерного спина, используемого в качестве кубита памяти для хранения запутанности (квантово-механический свойство, позволяющее идеально коррелировать информацию на любом расстоянии). Оба вращения полностью управляются микроволновыми импульсами. Эти алмазные устройства площадью всего несколько квадратных миллиметров размещены внутри холодильных установок, температура которых достигает -459°F.

2024-05-03

Управление отдельными многоатомными молекулами в оптической матрице для квантовых приложений

Группе физиков из Гарвардского университета впервые удалось поймать отдельные многоатомные молекулы в массивы оптических пинцетов. Физики нашли способ контролировать один тип молекул с тремя атомами — CaOH. Учёные начали с изоляции отдельных молекул в вакуумной камере, охлажденной до температуры чуть ниже 100 микрокельвинов, а затем с помощью оптических пинцетов (лазеров) разделили их, что позволило команде сосредоточить свои усилия на одной молекуле. Далее был разработан способ изображения отдельной молекулы, который доказал, что данный пинцет был загружен без разрушения изучаемой молекулы. Затем молекулу привели в желаемое квантовое состояние, что позволило контролировать ее вибрацию, вращение и ядерный спин.

2024-05-03

Световые пули обмениваются поляризацией при столкновениях

Световые пули – сверхкороткие импульсы света, образующиеся в нелинейной среде за счет явления самофокусировки. Световая пуля представляет собой уединенную волну – солитон, который по ряду параметров похож на движущуюся частицу. Солитоны могут сталкиваться между собой, ударяясь подобно бильярдным шарам, или проходить друг сквозь друга, обмениваясь энергией. До недавнего времени исследования ограничивались взаимодействием солитонов с одной поляризацией. Физики разработали трехмерную модель взаимодействия двух солитонов в многомодовом оптическом волокне с градиентным распределением показателя преломления. При определенном соотношении величин нелинейности и дисперсии решение в виде солитонов является устойчивым. Если рассмотреть не линейные, а круговые поляризации, то уравнения процесса взаимодействия солитонов становятся проще, и описание процесса может в итоге быть сведено к ньютоновской динамике. При взаимодействии друг с другом световые пули "обмениваются" поляризациями. Подбирая поляризацию и скорость сближения взаимодействующих световых пуль, можно "на выходе" получить любую заданную поляризацию света. В зависимости от скорости сближения световых пуль и их поляризаций столкновения могут быть как упругими, так и неупругими.

2024-04-22

Реализация идеального всенаправленного плаща-невидимки в свободном пространстве

Основываясь на оптике линейного преобразования и теории строения всенаправленно согласованных прозрачных метаматериалов, исследовательская группа разработала и внедрила полнопараметрический всенаправленный плащ-невидимку, способный скрывать крупномасштабные объекты в свободном пространстве. Один материал используется, чтобы позволить электромагнитной волне обойти область маскировки с всенаправленным согласованием импеданса и нулевой фазовой задержкой. Второй материал также обладает анизотропными определяющими параметрами для достижения фазовой компенсации с всенаправленным согласованием импеданса, а электромагнитные волны, распространяющиеся в оптическом направлении, имеют субсветовую фазовую скорость. В ходе экспериментальной проверки исследователи реализовали эти два материала с полнопараметрическими определяющими параметрами для ТМ-поляризованной волны.

2024-04-22

Гигантское вращение Фарадея в атомно тонких полупроводниках

В недавнем исследовании немецкие и индийские физики показали, что ультратонкие двумерные материалы, такие как диселенид вольфрама, могут поворачивать поляризацию видимого света на несколько градусов на определенных длинах волн в небольших магнитных полях, подходящих для использования в чипах. Ученые из Мюнстерского университета (Германия) и Индийского института научного образования и исследований (IISER) в Пуне (Индия) опубликовали свои выводы в журнале Nature Communications. Чип компьютерного процессора содержит миллиарды переключающих элементов. Таким образом, работа немецко-индийской группы является шагом вперед в разработке миниатюрных оптических изоляторов из 2D-материалов, которые имеют толщину всего несколько атомных слоев и в сто тысяч раз тоньше человеческого волоса.

2024-04-16

Универсальная генерация фототока в твердых телах с помощью линейно поляризованного лазера

Продемонстрировано, что одноцветная установка с круговой поляризацией порождает фототок в полуметалле Вейля независимо от лежащей в его основе симметрии и структурных деталей. Использование интенсивного лазерного импульса открывает фототок, зависящий от спиральности, который также настраивается в зависимости от эллиптичности света. Выделенный метод генерации фототока демонстрирует чувствительность к амплитуде, фазе и спиральности циркулярно поляризованного света. Кроме того, когда эллиптичность света переходит от круговой к линейной, фототок постепенно уменьшается до нуля. Преимущества этого нового подхода многочисленны. Во-первых, он генерирует универсальный фототок как в топологических, так и в нетопологических материалах. Во-вторых, его можно настроить, настроив угол между плоскостями поляризации и соотношение амплитуд двух источников света. В-третьих, его можно дополнительно настроить, введя временную задержку между двумя вспышками света.


PhysReal • Физическая реальность

Администрация не несет ответственности за достоверность информации, опубликованной в рекламных объявлениях. Материалы, опубликованные в блогах, отражают позиции их авторов, которые могут не совпадать с мнением редакции. Использование публикаций сайта разрешается при наличии прямой ссылки на PhysReal.
Контактный E-mail:

Telegram: https://t.me/physreal
ВКонтакте: https://vk.com/physreal
RSS (XML): Новости физики

Copyright © 2024 Development by Programilla.com