2025-04-02

Генерация сверхбыстрых магнитных шагов для когерентного управления

Исследователи из Института структуры и динамики материи Макса Планка (MPSD) разработали инновационный метод изучения сверхбыстрого магнетизма в материалах. Они продемонстрировали генерацию и применение ступенчатых магнитных полей, при которых магнитное поле включается за считанные пикосекунды. Работа опубликована в журнале Nature Photonics.

2025-03-24

Однонаправленная фокусировка света с использованием структурированных дифракционных поверхностей

Исследователи из Калифорнийского университета в Лос-Анджелесе (UCLA) представили новую оптическую технологию, которая обеспечивает точную фокусировку света — только в одном направлении. Эта новая конструкция однонаправленной фокусировки использует структурированные дифракционные слои, оптимизированные с помощью глубокого обучения для эффективной передачи света в прямом направлении работы, эффективно подавляя нежелательную обратную фокусировку света. Результаты опубликованы в журнале Advanced Optical Materials.

2025-03-10

Компактное оптическое устройство обеспечивает сверхвысокое разрешение изображения за пределами дифракционного предела

Исследователи из Китайского университета науки и технологий (USTC) представили планарное оптическое устройство, которое значительно расширяет возможности темнопольной микроскопии, достигая сверхразрешения изображения за пределами дифракционного предела. Работа была проведена под руководством профессора Чжан Доуго и опубликована в Трудах Национальной академии наук. Учёными представлено планарное фотонное устройство, которое объединяет рассеивающий слой, одномерный фотонный кристалл (1DPC) и металлическую пленку для создания спекл-структур темного поля. Это компактное устройство можно легко интегрировать в обычные микроскопы, устраняя необходимость в сложных оптических системах или точной настройке. Ключевое новшество заключается в использовании 1DPC, который действует как фильтр импульсного пространства для создания полых конусов спекл-шаблонов. Эти шаблоны служат источником освещения, позволяя получать высококонтрастные изображения с 1,55-кратным улучшением пространственного разрешения по сравнению с традиционными методами.

2025-02-19

Разработан лазер на тонком диске на основе фторида иттрия-лития, легированного гольмием, работающий при комнатной температуре

В исследовании, опубликованном в журнале Optics Express, учёные под руководством профессора Фу Юйси из Сианьского института оптики и точной механики (XIOPM) Китайской академии наук разработали первый тонкодисковый лазер на основе фторида иттрия-лития, легированного гольмием (Ho:YLF), работающий при комнатной температуре, который может обеспечить высокую эффективность и качественный выходной сигнал непрерывного лазера. Экспериментальные результаты показали, что при накачке лазера 1940 нм волоконным лазером, легированным Tm, с диаметром пятна накачки 1,8 мм он достигал пиковой выходной мощности 26,5 Вт с оптической эффективностью 38,1% и наклонной эффективностью 42,0%. Качество луча было близко к дифракционному пределу , а относительное стандартное отклонение стабильности мощности составляло всего 0,35%.

2025-02-15

Полностью оптический контроль дефектов захвата заряда в оксидах, легированных редкоземельными элементами

Размер объекта, создающего "единицы" и "нули", накладывал ограничение на размер запоминающего устройства. Но теперь исследователи Школы молекулярной инженерии имени Притцкера Чикагского университета (UChicago PME) изучили метод создания единиц и нулей из дефектов кристалла, каждый из которых имеет размер отдельного атома для классических приложений компьютерной памяти. Их исследование было опубликовано в журнале Nanophotonics.

 
2025-02-13

Электрооптические полости для измерения полей полостей на месте

Исследователи разработали новую экспериментальную платформу для измерения электрических полей света, захваченного между двумя зеркалами, с точностью до одного цикла. Эти электрооптические резонаторы Фабри-Перо позволят осуществлять точный контроль и наблюдение за взаимодействием света и материи, особенно в терагерцовом (ТГц) спектральном диапазоне. Работа опубликована в журнале Light: Science & Applications. Учёные представляют кафедру физической химии Института Фрица Габера Общества Макса Планка и Институт радиационной физики Центра Гельмгольца Дрезден-Россендорф.

2025-02-11

Математические решения для изучения двумерного взаимодействия света в фотонных кристаллических лазерах

Фотонные кристаллические поверхностно-излучающие лазеры (PCSEL) — это усовершенствованные лазерные диоды, в которых оптическое усиление обычно распределяется латерально к распространяющемуся свету в структуре фотонного кристалла (PC). Они отличаются от традиционных лазеров разделением функций усиления, обратной связи и излучения, предлагая масштабируемую одномодовую мощность и инновационные конструкции. Это приводит к повышению производительности и новым возможностям применения. В статье, опубликованной в журнале IEEE Journal of Selected Topics in Quantum Electronics 20 ноября 2024 года, учёные разработали метод численного моделирования взаимодействия световых волн внутри PCSEL.

2025-02-11

Полностью оптическое сверхпроводящее считывание кубитов

В яростной гонке за за масштабируемыми квантовыми компьютерами группа физиков из команды профессора Йоханнеса Финка из Институте науки и технологий Австрии (ISTA) сумела преодолеть важное ограничение — добилась полностью оптического считывания сверхпроводящих кубитов, выведя технологию за пределы ее нынешних ограничений, и значительно сократила количество криогенного оборудования. Их выводы опубликованы в журнале Nature Physics.

2025-02-06

Оптико-магнитная технология пятикратного увеличения эффективности крутящего момента

Исследователи из Университета Тохоку достигли значительного прогресса в области оптомагнитных технологий, наблюдая оптомагнитный момент, примерно в пять раз более эффективный, чем в обычных магнитах. Этот прорыв, совершенный под руководством Коки Нукуи, доцента Сатоси Иихамы и профессора Сигеми Мидзуками, имеет далеко идущие последствия для развития технологий спиновой памяти и хранения данных на основе света. Оптомагнитный момент — это метод, который позволяет генерировать силу на магнитах и может быть использовано для более эффективного изменения направления магнитов с помощью света. Создав нанопленки из сплава, содержащего до 70% платины, растворенной в кобальте, было обнаружено, что уникальные релятивистские квантово-механические эффекты платины значительно усиливают магнитный момент. Исследование показало, что усиление оптико-магнитного момента объясняется орбитальным угловым моментом электронов, создаваемым циркулярно поляризованным светом, и релятивистскими квантово-механическими эффектами. Результаты исследования опубликованы в журнале Physical Review Letters.

2025-01-24

Фотоиндуцированная хиральность в нехиральном кристалле

Команда учёных из Гамбурга-Оксфорда сосредоточилась на антиферро-хиральных кристаллах, типе нехиральных кристаллов, напоминающих антиферромагнитные материалы, в которых магнитные моменты анти-выравниваются в шахматном порядке, что приводит к исчезающей чистой намагниченности. Антиферро-хиральный кристалл состоит из эквивалентных количеств лево- и правосторонних подструктур в элементарной ячейке, что делает его в целом нехиральным. Исследовательская группа под руководством Андреа Каваллери из Института структуры и динамики материи Общества Макса Планка использовала терагерцовый свет для повышения этого баланса в нехиральном материале фосфате бора (BPO₄), таким образом вызывая конечную хиральность в сверхбыстром масштабе времени. Исследование группы опубликовано в журнале Science.


PhysReal • Физическая реальность

Администрация не несет ответственности за достоверность информации, опубликованной в рекламных объявлениях. Материалы, опубликованные в блогах, отражают позиции их авторов, которые могут не совпадать с мнением редакции. Использование публикаций сайта разрешается при наличии прямой ссылки на PhysReal.
Контактный E-mail:

Telegram: https://t.me/physreal
ВКонтакте: https://vk.com/physreal
RSS (XML): Новости физики

Copyright © 2025 Development by Programilla.com