2022-12-19

Дистанционная настройка времени жизни связанных плазмонов Дирака

Недавно группа под руководством профессора Цзэн Чангана из Университета наук и технологий Китая (USTC) Китайской академии наук в сотрудничестве с командой Ли Сяогуана из Шэньчжэньского университета позволила дистанционно настроить время жизни связанных плазмонных возбуждений путем разработки и введения дополнительного пути демпфирования путем регулировки уровня энергии Ферми графена, и система настройки демпфирования была объяснена в сочетании с теорией. Исследование было опубликовано в журнале Physical Review Letters как предложение редакции.

2022-12-16

Релятивистское зеркало из плазмы с килогерцовой частотой повторения

Ученым из LOA (Laboratoire d'Optique Appliquée) во Франции впервые удалось запустить со скоростью тысяча выстрелов в секунду так называемое плазменное зеркало в релятивистском режиме. Команда во главе со Стефаном Хесслером и Родриго Лопес-Мартенсом сообщает о доказательствах релятивистской SHHG, управляемой частотой повторения в килогерцах. Одновременно с излучением ГВГ наблюдается коррелированный пучок релятивистских электронов. Это важный шаг от исследовательских экспериментов с несколькими выстрелами к пригодному для использования вторичному излучению и источнику частиц. Выводы опубликованы в журнале Ultrafast Science.

2022-12-15

Рентгеновский шаг к сверхбыстрой наноэлектронике

Группа физиков из Польши, Германии и Италии, работающая на европейской установке XFEL и на установке DESY в Гамбурге, теперь может похвастаться значительным достижением в этой области: их исследование в npj Computational Materials представляет собой первый инструмент, который позволяет имитировать процесс размагничивания, вызванного рентгеновским излучением. Ученые из Института ядерной физики Польской академии наук (IFJ PAN) в Кракове являются важной частью команды.

2022-12-15

Оптоэлектронный резонатор повышает чувствительность детектора электронных импульсов

Исследователи из Университета Цукубы показали, как добавление крошечной структуры резонатора к детектору сверхбыстрых электронных импульсов уменьшило интенсивность терагерцового излучения, необходимого для характеристики длительности импульса. Был использован оптический резонатор для усиления электрического поля терагерцового (ТГц) светового импульса, генерируемого кристаллом, что уменьшает требуемый терагерцовый свет для характеристики длительности электронного импульса. ТГц излучение относится к лучам света с длинами волн между инфракрасным и микроволновым.

2022-12-15

Высокоскоростное и высокочувствительное терагерцовое обнаружение с использованием графенового транзистора

Исследовательская группа успешно обнаружила терагерцовые волны с быстрым откликом и высокой чувствительностью при комнатной температуре. Команду возглавили доцент Акира Сато из Научно-исследовательского института электрических коммуникаций Университета Тохоку (RIEC) и Хироаки Минамид из Центра передовой фотоники RIKEN. Подробности их прорыва были опубликованы в Интернете в виде избранной статьи в APL Photonics 2 декабря 2022 года.

2022-12-14

Лазер управляет сверхбыстрым жидкостным переключателем терагерцового излучения

Исследователи из Рурского университета в Бохуме (Германия) разработали сверхбыстрый переключатель на водной основе. Короткий, но мощный лазерный импульс переводит воду в проводящее состояние менее чем за одну триллионную долю секунды, и в это время она ведет себя почти как металл. Это делает его быстрее, чем самая высокая скорость переключения полупроводников на сегодняшний день. Адриан Бухманн, доктор Клаудиус Хоберг и доктор Фабио Новелли из Рурского исследовательского кластера передового опыта в области сольватации RESOLV опубликовали свои выводы в журнале APL Photonics 6 декабря 2022 года.

2022-12-06

Хранение фотонных кубитов по требованию на телекоммуникационных длинах волн

В недавнем исследовании, опубликованном в Physical Review Letters, исследовательская группа под руководством профессора Го Гуанцана из Университета науки и технологии Китая (USTC) Китайской академии наук (CAS) добилась хранения фотонных кубитов по требованию в телекоммуникациях с использованием лазерного волновода, изготовленного из кристалла, легированного эрбием.

2022-12-02

Разработан интегрированный электрооптический модулятор для эффективного изменения частот и полос пропускания одиночных фотонов

Недавно исследователи из Гарвардской школы инженерии и прикладных наук имени Джона А. Полсона (SEAS) разработали интегрированный электрооптический модулятор, который может эффективно изменять частоту и полосу пропускания одиночных фотонов. Устройство может быть использовано для более продвинутых квантовых вычислений и квантовых сетей. Исследование опубликовано в журнале Light: Science & Applications. Далее команда планирует использовать устройство для управления частотой и пропускной способностью квантовых излучателей для приложений в квантовых сетях.

2022-11-24

Продемонстрирована первая в мире непрерывная генерация лазерного диода глубокого ультрафиолета при комнатной температуре

Исследовательская группа во главе с лауреатом Нобелевской премии 2014 года Хироши Амано из Института материалов и систем устойчивого развития (IMaSS) Университета Нагоя в центральной Японии в сотрудничестве с корпорацией Asahi Kasei успешно провела первую в мире непрерывную генерацию глубокого излучения при комнатной температуре — ультрафиолетовый лазерный диод (длины волн до диапазона УФ-С). Эти результаты, опубликованные в Applied Physics Letters, представляют собой шаг к широкому использованию технологии с потенциалом для широкого спектра применений, включая медицину.

2022-11-23

Транспортировка двухфотонных квантовых состояний света через оптическое волокно локализации Андерсона с фазовым разделением

В конце 50-х годов физик Филип У. Андерсон (который также внес важный вклад в физику элементарных частиц и сверхпроводимость) предсказал то, что сейчас называется локализацией Андерсона. За это открытие он получил Нобелевскую премию по физике 1977 года. Андерсон теоретически показал, при каких условиях электрон в неупорядоченной системе может либо свободно перемещаться по системе в целом, либо быть привязанным к определенному положению как «локализованный электрон». Эта неупорядоченная система может быть, например, полупроводником с примесями.


PhysReal • Физическая реальность

Администрация не несет ответственности за достоверность информации, опубликованной в рекламных объявлениях. Материалы, опубликованные в блогах, отражают позиции их авторов, которые могут не совпадать с мнением редакции. Использование публикаций сайта разрешается при наличии прямой ссылки на PhysReal.
Контактный E-mail:

Telegram: https://t.me/physreal
ВКонтакте: https://vk.com/physreal
RSS (XML): Новости физики

Copyright © 2024 Development by Programilla.com