2023-04-13

Новый вид квантового транспорта обнаружен в устройстве, сочетающем высокотемпературные сверхпроводники и графен

В эксперименте было продемонстрировано новое квантовое устройство, сочетающее в себе графен и нетрадиционный высокотемпературный сверхпроводник. В частности показано, что в электронном транспорте между графеном и высокотемпературным сверхпроводником преобладает уникальный транспортный процесс, возникающий из комбинации двух специфических свойств: туннелирования Клейна графена и андреевского отражения сверхпроводника. Исследование опубликовано в журнале Physical Review Letters.

2023-03-31

Синтез графена c использованием интенсивного света

Исследовательская группа профессора DGIST Юнкью Ли использовала интенсивный свет на поверхности медной проволоки для синтеза графена, тем самым увеличив скорость производства и снизив себестоимость высококачественных прозрачно-гибких электродных материалов и, следовательно, позволив их массовое производство. Результаты были опубликованы в выпуске Nano Energy от 23 февраля.

2023-03-06

Гигантские орбитальные магнитные моменты и парамагнитный сдвиг в искусственных релятивистских атомах и молекулах

Согласно новому исследованию, захваченные электроны, движущиеся по круговым петлям с экстремальными скоростями внутри графеновых квантовых точек, очень чувствительны к внешним магнитным полям и могут использоваться в качестве новых датчиков магнитного поля с уникальными возможностями.

2023-02-23

Повышение сверхпроводимости в бислоях графена

Когда диселенид вольфрама помещается поверх двухслойного графена, сверхпроводимость нескрученного графена значительно улучшается. Примечательно, что критическая температура сверхпроводимости, то есть самая высокая температура, при которой материал может сверхпроводить, увеличивается в 10 раз. Находясь в непосредственной близости от графена, диселенид вольфрама наделяет преимущества поворота под «магическим углом» для более массовый раскрученный графен. Это открытие дает новое представление о природе сверхпроводимости и предлагает стратегии повышения сверхпроводимости в других родственных материалах на основе графена.

2023-02-15

Графен, свернутый под определенным углом, становится сверхпроводником

Исследователи представили новые доказательства того, как графен, свернутый под определенным углом, может стать сверхпроводником, перемещающим электричество без потери энергии. В исследовании, опубликованном сегодня (15 февраля 2023 г.) в журнале Nature, группа под руководством физиков из Университета штата Огайо сообщила о своем открытии ключевой роли, которую квантовая геометрия играет в превращении этого искривленного графена в сверхпроводник.

2023-02-14

В гетероструктуре Ван-дер-Ваальса продемонстрировано настраиваемое затвором наноразмерное отрицательное преломление поляритонов

Новое исследование под руководством Дай Цин из Национального центра нанонауки и технологий (NCNST) Китайской академии наук (CAS) и Хавьера Абахо из Института фотонных наук (ICFO) в Испании показало настраиваемый наноразмерный негатив преломления поляритонов в среднем инфракрасном диапазоне через ван-дер-ваальсову гетероструктуру из графена и триоксида молибдена. Гетероструктуры атомарной толщины ослабляют потери на рассеяние на границе раздела, в то же время обеспечивая активно настраиваемый переход от нормального к отрицательному преломлению посредством электрического стробирования. Работа была опубликована в Science.

2023-01-30

Электрическое переключение сверхпроводимости бистабильного муарового сверхпроводника под магическим углом

С некоторым тщательным скручиванием и сложением физики Массачусетского технологического института обнаружили новое и экзотическое свойство графена с «магическим углом»: сверхпроводимость, которую можно включать и выключать электрическим импульсом, подобно выключателю света. В статье, опубликованной в журнале Nature Nanotechnology, сообщается, что, укладывая графен под магическим углом между двумя смещенными слоями нитрида бора — двумерного изолирующего материала — уникальное выравнивание многослойной структуры позволило включить сверхпроводимость графена и выключить коротким электрическим импульсом.

2023-01-26

Разгадано образование двумерных квазикристаллов из оксидов металлов

Структура двумерного оксида титана разрушается при высоких температурах при добавлении бария; вместо правильных шестиугольников апериодически создаются кольца из четырех, семи и десяти атомов. Группа ученых из Университета Мартина Лютера в Галле-Виттенберге (MLU) сделала это открытие в сотрудничестве с исследователями из Института физики микроструктур Макса Планка (MPI), Университета Гренобль-Альп и Национального института стандартов и технологий (Гейтерсбург, США) — решение загадки образования двумерных квазикристаллов из оксидов металлов. Их результаты были опубликованы в Nature Communications.

2022-12-19

Дистанционная настройка времени жизни связанных плазмонов Дирака

Недавно группа под руководством профессора Цзэн Чангана из Университета наук и технологий Китая (USTC) Китайской академии наук в сотрудничестве с командой Ли Сяогуана из Шэньчжэньского университета позволила дистанционно настроить время жизни связанных плазмонных возбуждений путем разработки и введения дополнительного пути демпфирования путем регулировки уровня энергии Ферми графена, и система настройки демпфирования была объяснена в сочетании с теорией. Исследование было опубликовано в журнале Physical Review Letters как предложение редакции.

2022-12-17

Создан первый двумерный ферримагнетизм в графене

Ученые Санкт-Петербургского университета совместно с зарубежными коллегами создали первый в мире двумерный ферромагнетик в графене. Использование полученного магнитного состояния графена может стать основой нового подхода к электронике, повышения ее энергоэффективности и быстродействия при разработке устройств по альтернативным технологиям без использования кремния. Результаты исследования опубликованы в журнале Physical Review Letters.


PhysReal • Физическая реальность

Администрация не несет ответственности за достоверность информации, опубликованной в рекламных объявлениях. Материалы, опубликованные в блогах, отражают позиции их авторов, которые могут не совпадать с мнением редакции. Использование публикаций сайта разрешается при наличии прямой ссылки на PhysReal.
Контактный E-mail:

Telegram: https://t.me/physreal
ВКонтакте: https://vk.com/physreal
RSS (XML): Новости физики

Copyright © 2024 Development by Programilla.com