2023-05-10

Обнаружены полуметаллизация и новое фотоэлектрическое поведение йодида свинца под высоким давлением

Согласно исследованию, опубликованному в Advanced Optical Materials, профессор Дин Цзюньфэн и его команда из Института физических наук Хэфэй Китайской академии наук показали, что полупроводниковый йодид свинца претерпевает переход в полуметаллическое состояние, когда подвергается давлению. Этот переход сопровождается улучшением фотоэлектрических свойств и расширением диапазона спектрального отклика в инфракрасный диапазон.

2023-05-10

Анизотропное плавление фрустрированных антиферромагнетиков Изинга

Физики из Университета Райса и Лаборатории Эймса в Университете штата Айова обнаружили «сложенные друг на друга блины жидкого магнетизма», которые возникают в некоторых спиральных магнитах из-за изменения расположения магнитных диполей при нагревании материала. При очень низких температурах  упорядоченное расположение диполей приводит к магнетизму. При высокой температуре диполи разупорядочены и материал немагнитен. Блины жидкоподобного магнетизма возникают при промежуточной температуре, когда магнитные взаимодействия внутри горизонтальных 2D-слоев намного сильнее, чем вертикальные взаимодействия между слоями.

2023-05-08

Обнаружен дальнодействующий сверхток поверхности Джозефсона через ван-дер-ваальсов ферромагнетик

В исследовании, опубликованном в Nature Communications, группа профессора Сян Биня из Университета науки и технологий Китая Китайской академии наук в сотрудничестве с доцентом и профессором Ван Чжи из Университета Сунь Ятсена обнаружили дальнодействующий поверхностный суперток Джозефсона через ван-дер-ваальсов ферромагнетик.

2023-05-05

Высокопроизводительное устройство для когерентного микроволнового излучения и усиления на основе поляритона

Исследователи из Университета Манитобы недавно разработали высокоэффективное устройство на основе магнонных поляритонов резонатора, которое может излучать и усиливать микроволны. Было обнаружено, что это устройство, представленное в Physical Review Letters, значительно превосходит ранее предложенные твердотельные устройства для когерентного микроволнового излучения и усиления при комнатной температуре.

2023-04-27

Эффективное и точное описание взаимодействия электронов в области физики конденсированных сред

Одной из нерешенных задач в области физики конденсированных сред является поиск вычислительно эффективных и одновременно точных методов описания взаимодействующих электронных систем для кристаллических материалов. В новом исследовании учёные обнаружили эффективный, но очень точный способ сделать это. Работа под руководством Жетинга Джина (аспиранта факультета прикладной физики Йельского университета) и его научного руководителя Сохраба Исмаила-Бейги опубликована в журнале Physical Review B. По сравнению с эталонными расчетами новый метод на три-четыре порядка быстрее.

2023-04-19

Обнаружена аномалия акустического топологического угла

Исследователи из Института акустики Китайской академии наук (IACAS) в сотрудничестве с Уханьским университетом и Южно-Китайским технологическим университетом сконструировали акустические конфигурации Ванье путем измерения спектральных зарядов в фононных кристаллах для обнаружения топологических свойства акустических искусственных кристаллов. Исследование было опубликовано в Science Bulletin 11 марта.

2023-04-18

Дефекты алмаза могут защитить передачу данных и измерить температуру

Ученые из Сколтеха, Московского педагогического государственного университета и других исследовательских центров обнаружили новый класс дефектов в алмазе, которые могут быть использованы для квантовой обработки информации и точных и дистанционных измерений температуры в очень малых объектах, таких как живые клетки. О результатах сообщается в письме, опубликованном в Physical Review B.

2023-04-18

Физики обнаружили необычные волны в магните на основе никеля

В исследовании, опубликованном в Nature Communications, физики сообщили об обнаружении необычных свойств у молибдата никеля, слоистого магнитного кристалла. Субатомные частицы, называемые электронами, напоминают крохотные магниты и ориентируются, как стрелки компаса, по отношению к магнитным полям. В экспериментах, в которых нейтроны рассеивались магнитными ионами никеля внутри кристаллов, было обнаружено, что два крайних электрона от каждого иона никеля ведут себя по-разному. Вместо того, чтобы выровнять свои спины, как стрелки компаса, они компенсировали друг друга в явлении, которое физики называют спиновым синглетом.

2023-04-17

Рентгеновские лучи раскрывают электронные детали сверхпроводников на основе никеля

Ученые из Брукхейвенской национальной лаборатории Министерства энергетики США обнаружили новые подробности об электронах в семействе сверхпроводящих материалов на основе никеля. Исследование, описанное в двух статьях, опубликованных в Physical Review X, показывает, что эти материалы на основе никеля имеют определенное сходство и ключевые отличия со сверхпроводниками на основе меди. Сравнение двух видов «высокотемпературных» сверхпроводников может помочь сосредоточиться на ключевой характеристике проводить электрический ток без потери энергии в виде тепла.

2023-04-07

Микроволновая дальнометрия с квантовым усилением

В исследовании, опубликованном в Nature Communications, подчеркивается прогресс, достигнутый в области практического квантового зондирования группой под руководством академика Го Гуанцана и профессора Сунь Фангвэня из Университета науки и технологий Китая (USTC) Китайской академии наук (CAS). Команда использовала микро- и наноквантовое зондирование в сочетании с усилением локального электромагнитного поля в масштабах глубоких субволновых длин для изучения обнаружения микроволновых сигналов и беспроводной дальности, достигнув точности позиционирования в 10-4 длины волны.


PhysReal • Физическая реальность

Администрация не несет ответственности за достоверность информации, опубликованной в рекламных объявлениях. Материалы, опубликованные в блогах, отражают позиции их авторов, которые могут не совпадать с мнением редакции. Использование публикаций сайта разрешается при наличии прямой ссылки на PhysReal.
Контактный E-mail:

Telegram: https://t.me/physreal
ВКонтакте: https://vk.com/physreal
RSS (XML): Новости физики

Copyright © 2025 Development by Programilla.com