2023-01-26

Физики научились управлять двумя квантовыми источниками света, а не одним

Совершив новый прорыв, исследователи из Копенгагенского университета в сотрудничестве с Рурским университетом в Бохуме решили проблему, которая годами вызывала головную боль у квантовых исследователей. Теперь исследователи могут управлять двумя источниками квантового света, а не одним. Этот колоссальный прорыв может показаться тривиальным для тех, кто не знаком с квантовой механикой, но позволяет исследователям создать явление, известное как квантово-механическая запутанность. Это, в свою очередь, открывает новые возможности для компаний и других лиц в коммерческом использовании технологии.

2023-01-26

Физики впервые наблюдают квазичастицы в классических системах

Идея квазичастиц была введена советским физиком Львом Ландау в 1941 году и с тех пор приносила большие плоды в исследованиях квантовой материи. Некоторые примеры квазичастиц включают боголюбовские квазичастицы (разорванные куперовские пары) в сверхпроводимости, экситоны в полупроводниках и фононы. Но мнение о том, что квазичастицы относятся исключительно к квантовой материи, недавно было оспорено группой исследователей из Центра мягкой и живой материи (CSLM) Института фундаментальных наук (IBS) в Южной Корее. Они исследовали классическую систему, состоящую из микрочастиц, движимых вязким потоком в тонком микрожидкостном канале. Поскольку частицы увлекаются потоком, они возмущают линии тока вокруг себя, тем самым воздействуя гидродинамическими силами друг на друга.

2023-01-26

Установлен рекорд скорости в рукотворном управлении электрическими токами в твердых материалах

С помощью сверхбыстрых лазерных вспышек ученые из Университета Ростока в сотрудничестве с исследователями из Института исследований твердого тела им. Макса Планка в Штутгарте сгенерировали и измерили самый короткий электронный импульс на сегодняшний день. Электронный импульс был создан с помощью лазеров для удаления электронов из крошечного металлического наконечника и длился всего 53 аттосекунды. Мероприятие установило новый рекорд скорости в рукотворном управлении электрическими токами в твердых материалах.

2023-01-26

Разгадано образование двумерных квазикристаллов из оксидов металлов

Структура двумерного оксида титана разрушается при высоких температурах при добавлении бария; вместо правильных шестиугольников апериодически создаются кольца из четырех, семи и десяти атомов. Группа ученых из Университета Мартина Лютера в Галле-Виттенберге (MLU) сделала это открытие в сотрудничестве с исследователями из Института физики микроструктур Макса Планка (MPI), Университета Гренобль-Альп и Национального института стандартов и технологий (Гейтерсбург, США) — решение загадки образования двумерных квазикристаллов из оксидов металлов. Их результаты были опубликованы в Nature Communications.

2023-01-24

Тепловая конвекция в центральном силовом поле, опосредованная звуком

Исследователи Калифорнийского университета в Лос-Анджелесе эффективно воспроизвели тип гравитации, который существует на звездах и других планетах или вблизи них, внутри стеклянной сферы диаметром 3 сантиметра (около 1,2 дюйма). Для этого они использовали звуковые волны для создания сферического гравитационного поля и создания конвекции плазмы — процесса, при котором газ охлаждается по мере приближения к поверхности тела, а затем снова нагревается и снова поднимается вверх по мере приближения к ядру — создавая поток жидкости, который в свою очередь генерирует магнитный ток. Статья опубликована в журнале Physical Review Letters.

2023-01-18

Первое наблюдение явления черенковского излучения в двумерном пространстве

Исследователи разработали специальную многослойную структуру, обеспечивающую взаимодействие между свободными электронами и световыми волнами, распространяющимися по поверхности. Продуманная конструкция конструкции позволила провести первое измерение двухмерного черенковского излучения. Низкая размерность эффекта позволила заглянуть в квантовую природу процесса испускания излучения свободными электронами: подсчет количества фотонов (квантовых частиц света), испускаемых одним электроном, и косвенное свидетельство запутанности электронов световыми волнами, которые они излучают.

2023-01-18

Неустойчивость Вейбеля преобразовует энергию температурной анизотропии плазмы в энергию магнитного поля

Недавние исследования показывают, что магнитные поля могут спонтанно возникать в плазме. Это может произойти, если плазма имеет температурную анизотропию — температуру, различную в разных пространственных направлениях. Это было предсказано теоретиком плазмы Эриком Вейбелем более шести десятилетий назад (неустойчивость Вейбеля), но только сейчас однозначно наблюдалось в лаборатории. Новое исследование, опубликованное в Proceedings of the National Academy of Sciences, показало, что этот процесс может преобразовывать значительную часть энергии, хранящейся в температурной анизотропии, в энергию магнитного поля. Также обнаружено, что нестабильность Вейбеля может быть источником магнитных полей, которые пронизывают весь космос.

2023-01-17

Механизм нестабильности периодического движения пузырьков в парадоксе Леонардо да Винчи из Лестерского кодекса

Профессор Мигель Анхель Эррада из Университета Севильи и профессор Йенс Г. Эггерс из Бристольского университета открыли механизм, объясняющий нестабильное движение пузырьков, поднимающихся в воде. По словам исследователей, результаты, которые опубликованы в журнале PNAS, могут быть полезны для понимания движения частиц, поведение которых является промежуточным между твердым телом и газом. Исследователи предлагают механизм нестабильности траектории пузыря, при котором периодическое наклонение пузыря изменяет его кривизну, тем самым влияя на восходящую скорость и вызывая колебание траектории, наклоняя сторону пузыря, чья кривизна увеличилась. Затем, когда жидкость движется быстрее и давление жидкости падает вокруг поверхности с большой кривизной, дисбаланс давления возвращает пузырек в исходное положение, перезапуская периодический цикл.

2023-01-16

Отражение молнии лазерным громоотводом

Европейский консорциум, состоящий из Женевского университета (UNIGE), Политехнической школы (Париж), EPFL, hes-so и научных лазеров TRUMPF (Мюнхен), разработал многообещающую альтернативу: лазерный громоотвод или LLR. После тестирования LLR на вершине Сантис (в Швейцарии) у исследователей теперь есть доказательства его осуществимости. Стержень даже в плохую погоду может отразить молнию на несколько десятков метров. Результаты этого исследования опубликованы в журнале Nature Photonics. После первого случая молнии с использованием лазера было обнаружено, что разряд может следовать за лучом почти на 60 метров, прежде чем достигнет башни, а это означает, что радиус защитной поверхности увеличился со 120 м до 180 м. Долгосрочная цель включает использование LLR для удлинения 10-метрового громоотвода на 500 м.

2023-01-16

Первая экспериментальная бозонная стимуляция рассеяния атомного света в ультрахолодном газе

Бозоны, один из двух фундаментальных классов частиц, были в центре внимания бесчисленных физических исследований. Когда бозонные частицы переходят в уже занятое конечное квантовое состояние, скорость этого перехода увеличивается за счет так называемого «числа заполнения» — эффекта, известного как бозонная стимуляция. Появление бозонной стимуляции в процессах рассеяния света было впервые предсказано более тридцати лет назад, однако непосредственное наблюдение за ней в экспериментальных условиях до сих пор оказалось сложной задачей. Исследователи из Гарвардского центра ультрахолодных атомов Массачусетского технологического института недавно впервые наблюдали бозонное усиленное рассеяние света в ультрахолодном газе. Их результаты, опубликованные в журнале Nature Physics, могут открыть новые захватывающие возможности для изучения бозонных систем.


PhysReal • Физическая реальность

Администрация не несет ответственности за достоверность информации, опубликованной в рекламных объявлениях. Материалы, опубликованные в блогах, отражают позиции их авторов, которые могут не совпадать с мнением редакции. Использование публикаций сайта разрешается при наличии прямой ссылки на PhysReal.
Контактный E-mail:

Telegram: https://t.me/physreal
ВКонтакте: https://vk.com/physreal
RSS (XML): Новости физики

Copyright © 2024 Development by Programilla.com