2022-12-16

В чистом магнитном кристалле обнаружен динамический фрактал

Исследователи из Кембриджского университета, Института физики сложных систем им. Макса Планка в Дрездене, Университета Теннесси и Национального университета Ла-Платы обнаружили совершенно новый тип фракталов, возникающих в классе магнитов, называемых спиновыми льдами. Открытие было неожиданным, потому что фракталы были видны в чистом трехмерном кристалле, где их обычно нельзя было бы ожидать. Более примечательно то, что фракталы видны в динамических свойствах кристалла и скрыты в статических. Эти особенности послужили поводом для названия «эмерджентный динамический фрактал». Результаты опубликованы в журнале Science 15 декабря.

2022-12-08

Сжатие микроволновых полей магнитострикционным взаимодействием

Работа показывает, что при температуре 200 милликельвин магнитомеханическая система резонатора может создавать микроволновые сжатые состояния с той же степенью сжатия, что и JPA (параметрические усилители Джозефсона). Это значительно снижает жесткие требования к температуре окружающей среды. Кроме того, для работы JPA требуется большая вспомогательная цепь, а резонаторная магнитомеханическая система значительно проще, что значительно удешевляет эксперимент. Статья опубликована в журнале National Science Review.

2022-12-06

Антиферромагнетики подходят для переноса спиновых волн на большие расстояния

Ученые исследовали скошенный антиферромагнетик из оксида иттрия-железа YFeO3. Поскольку его кристаллическая структура коренным образом отличается от структуры известного гематита, исследователи сначала задались вопросом, могут ли все еще формироваться и распространяться спиновые волны, и выяснили, что определенно могут. Исследование было недавно опубликовано в Nature Communications.

2022-12-06

Хранение фотонных кубитов по требованию на телекоммуникационных длинах волн

В недавнем исследовании, опубликованном в Physical Review Letters, исследовательская группа под руководством профессора Го Гуанцана из Университета науки и технологии Китая (USTC) Китайской академии наук (CAS) добилась хранения фотонных кубитов по требованию в телекоммуникациях с использованием лазерного волновода, изготовленного из кристалла, легированного эрбием.

2022-12-02

Разработан интегрированный электрооптический модулятор для эффективного изменения частот и полос пропускания одиночных фотонов

Недавно исследователи из Гарвардской школы инженерии и прикладных наук имени Джона А. Полсона (SEAS) разработали интегрированный электрооптический модулятор, который может эффективно изменять частоту и полосу пропускания одиночных фотонов. Устройство может быть использовано для более продвинутых квантовых вычислений и квантовых сетей. Исследование опубликовано в журнале Light: Science & Applications. Далее команда планирует использовать устройство для управления частотой и пропускной способностью квантовых излучателей для приложений в квантовых сетях.

2022-12-01

Сверхбыстрый световой контроль над электронами в кристаллах выявил новое эхо энергетического диапазона

Исследовательская группа под руководством Ацуши Оно, доцента кафедры физики Университета Тохоку, обнаружила новый тип явления эха, связанного со структурой энергетических зон в кристаллических твердых телах. Так называемые «эхо энергетического диапазона» были обнаружены после того, как группа начала теоретически исследовать сверхбыструю динамику оптически управляемых квазичастиц в кристаллических твердых телах. Подробности их выводов были опубликованы в журнале Physical Review Research 30 ноября 2022 года.

2022-11-30

Наблюдение аномального эффекта Холла в альтермагнитном диоксиде рутения

Исследователи из Бейханского университета, Университета имени Иоганна Гутенберга в Майнце и Хуачжунского университета науки и технологий недавно наблюдали аномальный эффект Холла в диоксиде рутения (RuO2), материале с классической кристаллической структурой рутила, который, как недавно было обнаружено, имеет антипараллельный магнитный порядок. Их выводы, опубликованные в статье в Nature Electronics, могут открыть интересные возможности для дальнейших исследований материалов с так называемым компенсированным антипараллельным магнитным порядком, таких как RuO2.

2022-11-28

Подтверждена независимая от устройства подлинная многосторонняя запутанность

Профессор Ли Чуанфэн, профессор Хуан Юньфэн, профессор Чен Гэн и их коллеги из группы профессора Го Гуанцана в Университете науки и технологии Китая (USTC) Китайской академии наук (CAS), сотрудничая со швейцарскими академиками, впервые сертифицировали аппаратно-независимую подлинную многочастную запутанность и изобрели новый метод сертификации подлинной многочастной запутанности без каких-либо предположений о внутреннем функционировании измерительного устройства. Их работа была опубликована в Physical Review Letters.

2022-11-25

Доказательства вклада бозона Хиггса в образование пар Z-бозонов при высоких энергиях

CMS Collaboration, большая группа исследователей, участвовавших в эксперименте CMS, недавно получила обновленное измерение ширины бозона Хиггса, а также собрала первые доказательства его вклада вне оболочки в образование пар Z-бозонов. Их выводы, опубликованные в журнале Nature Physics, согласуются с предсказаниями стандартной модели.

2022-11-23

Транспортировка двухфотонных квантовых состояний света через оптическое волокно локализации Андерсона с фазовым разделением

В конце 50-х годов физик Филип У. Андерсон (который также внес важный вклад в физику элементарных частиц и сверхпроводимость) предсказал то, что сейчас называется локализацией Андерсона. За это открытие он получил Нобелевскую премию по физике 1977 года. Андерсон теоретически показал, при каких условиях электрон в неупорядоченной системе может либо свободно перемещаться по системе в целом, либо быть привязанным к определенному положению как «локализованный электрон». Эта неупорядоченная система может быть, например, полупроводником с примесями.


PhysReal • Физическая реальность

Администрация не несет ответственности за достоверность информации, опубликованной в рекламных объявлениях. Материалы, опубликованные в блогах, отражают позиции их авторов, которые могут не совпадать с мнением редакции. Использование публикаций сайта разрешается при наличии прямой ссылки на PhysReal.
Контактный E-mail:

Telegram: https://t.me/physreal
ВКонтакте: https://vk.com/physreal
RSS (XML): Новости физики

Copyright © 2024 Development by Programilla.com