2025-01-24

Синтез полуметаллического ферромагнетика Вейля с точечной поверхностью Ферми

Фермионы Вейля возникают как коллективные квантовые возбуждения электронов в кристаллах. Предсказывается, что они будут проявлять экзотические электромагнитные свойства, привлекая интенсивный интерес во всем мире. Однако, несмотря на тщательное изучение тысяч кристаллов, большинство материалов Вейля на сегодняшний день демонстрируют электропроводность, в основном контролируемую нежелательными, тривиальными электронами, скрывающими фермионы Вейля. Наконец, удалось синтезировать материал, содержащий одну пару фермионов Вейля и не имеющий нерелевантных электронных состояний. Работа, опубликованная в журнале Nature, стала результатом четырехлетнего сотрудничества CEMS, Междисциплинарной программы теоретических и математических наук RIKEN (iTHEMS), Центра квантово-фазовой электроники (QPEC) Токийского университета, Института исследований материалов Университета Тохоку и Наньянского технологического университета в Сингапуре.

2025-01-09

Квантовый холодильник с термическим приводом автономно сбрасывает сверхпроводящий кубит

Учёные из Технологического университета Чалмерса (Швеция) и Университета Мэриленда (США) разработали новый тип холодильника, который может автономно охлаждать сверхпроводящие кубиты для записи низких температур, открывая путь для более надежных квантовых вычислений. Устройство описано в статье журнала Nature Physics. Квантовый холодильник основан на сверхпроводящих схемах и питается от тепла из окружающей среды. Он может охлаждать целевой кубит до 22 милликельвинов без внешнего управления. Учёные смогли увеличить вероятность того, что кубит будет находиться в основном состоянии перед вычислением, до 99,97%, что значительно лучше, чем то, чего могли достичь предыдущие методы, то есть между 99,8 и 99,92%. Разница небольшая, но при выполнении нескольких вычислений она приводит к значительному повышению производительности.

2025-01-07

Опосредованные полостью колебания iSWAP между далекими спинами

Исследователи из Делфтского технологического университета (TU Delft) разработали многообещающий подход к реализации когерентных квантовых взаимодействий между удаленными полупроводниковыми кубитами. Их статья, опубликованная в журнале Nature Physics, демонстрирует достижение когерентного взаимодействия между двумя кубитами электронного спина на расстоянии 250 мкм друг от друга.

2025-01-07

Квантовый пробой сверхпроводимости первого порядка в аморфном сверхпроводнике

Группа физиков из Университета Гренобля в Альпах (CNRS) во Франции в сотрудничестве с коллегой из Технологического института Карлсруэ в Германии наблюдала странный квантовый фазовый переход в пленках оксида индия. В своем исследовании, опубликованном в журнале Nature Physics, группа использовала микроволновую спектроскопию для изучения внутренних свойств и поведения пленок оксида индия при их переходе между сверхпроводящим и изолирующим состояниями.

2024-11-15

Физики создали первый полностью механический кубит

Команда физиков из ETH Zürich построила первый в мире работающий механический кубит. В своей статье, опубликованной в журнале Science, учёные описывают идею создания такого кубита и приводят данные тестирования. Вместо представления данных только единицами и нулями кубиты могут хранить данные в суперпозиции обоих состояний. Для этого физики создали то, что они описывают как мембрану, похожую на кожуру барабана, которая может удерживать информацию в устойчивом состоянии, вибрационном состоянии или в состоянии, сочетающем в себе и то, и другое одновременно. Для решения проблемы кратковременности в качестве механического резонатора был использован пьезоэлектрический диск, прикрепленный к сапфировому основанию. Затем они прикрепили кубит из сверхпроводящего материала к его собственной сапфировой основе, используя специальную разработанную технологию. В результате появился кубит со временем когерентности, зависящим от типа используемого сверхпроводника, и в среднем лучше, чем у гибридных или виртуальных кубитов, используемых в других системах.

2024-11-13

Экспериментальное подтверждение существования нового типа сверхпроводника на основе электронной нематичности

Команда учёных под руководством Йельского университета нашла убедительные доказательства существования нового типа сверхпроводящего материала, фундаментального научного прорыва, который может открыть дверь к созданию сверхпроводимости — потока электрического тока без потери энергии — по-новому. Это открытие также оказывает ощутимую поддержку давней теории сверхпроводимости, согласно которой она может быть основана на электронной нематичности, фазе материи, в которой частицы нарушают свою вращательную симметрию. В эксперименте учёные охлаждали материалы на основе железа до температуры менее 500 милликельвинов в течение нескольких дней. Для отслеживания материала они использовали сканирующий туннельный микроскоп (СТМ), который снимает изображения квантовых состояний электронов на атомном уровне. Изображения СТМ позволили найти разрыв, который точно соответствует сверхпроводимости, вызванной электронной нематичностью.

2024-11-11

Контролируемый перенос атомов с помощью когерентного туннелирования между оптическими пинцетами

Экспериментальная установка, построенная на физическом факультете Техниона, демонстрирует перенос атомов из одного места в другое посредством квантового туннелирования между оптическими пинцетами. Исследование, проведенное профессором Йоавом Саги и докторантом Янаем Флоршаймом из Института твердого тела, было опубликовано в журнале Science Advances. В основе эксперимента лежит оптический пинцет — экспериментальный инструмент для захвата атомов, молекул и даже живых клеток с помощью оптического потенциала, создаваемого лазерными лучами, сфокусированными в пятне микронного размера.

2024-11-06

Создание и контроль скирмионов при комнатной температуре в 2D материалах

Корейский научно-исследовательский институт стандартов и науки (KRISS) впервые в мире создал и контролировал скирмионы при комнатной температуре в двумерных (2D) материалах. Это достижение снижает энергопотребление по сравнению с традиционными трехмерными (3D) системами, одновременно максимизируя квантовые эффекты, что делает его основной технологией для разработки квантовых компьютеров, работающих при комнатной температуре, и полупроводников с искусственным интеллектом. Исследование опубликовано в журнале Advanced Materials. В эксперименте скирмионы создавались путем приложения очень тонкого напряжения и магнитного поля к поверхности магнита и далее перемещались в нужном направлении с помощью тока. Результаты эксперимента показали, что энергопотребление на управление скирмионами в 2D составило примерно 1/1000 от такового в 3D, а их размер уменьшился более чем в десять раз, что обеспечило значительные преимущества с точки зрения стабильности и скорости.

2024-11-04

Для исследования квантовой запутанности предложен тест Белла

Учёные предложили новый способ прямого исследования квантовой запутанности. Исследование было принято к публикации в Physical Review X. Команда с кафедры физики, в которую входят доктор Марко Руберти, профессор Виталий Авербух и профессор Флориан Минтерт, придумала способ использовать тест Белла для процесса фотоионизации, когда фотон заставляет электрон выбрасываться из атома, в результате чего электрон и образующийся в результате ион остаются запутанными. Используя передовую теорию многих тел, удалось показать, что это можно сделать путем одновременного измерения спина фотоэлектрона и фотонной эмиссии оставшегося иона.

2024-10-21

Новый квантовый лидар обеспечивает высокочувствительное обнаружение ветра на расстоянии 16 км

Исследовательская группа предложила теорию лидара для измерения ветра, основанную на квантовой интерференции с повышающим преобразованием, и успешно разработала прототип. Их работа опубликована в журнале ACS Photonics. Учёные предложили теорию использования HOM-интерференции и квантового стирания высокого порядка для демонстрации явлений квантовой интерференции с независимыми фотонами из разных источников света. HOM-интерференция — это квантовое оптическое явление, при котором интерференция возникает между двумя фотонами, даже если они не сосуществуют, демонстрируя корреляции. Квантовое стирание — это квантовомеханический процесс, который может устранить или восстановить квантовую запутанность между двумя фотонами, манипулируя дополнительными фотонами. Результаты показали, что эта квантовая лидарная система может записывать оптические сигналы в полосе пропускания более 17 ГГц (что соответствует 13 км/с) с частотой дискретизации МГц, решая проблемы с высокой частотой дискретизации и большими проблемами хранения данных для слабых сигналов при непрерывном обнаружении сверхбыстрых целей. Кроме того, в полевых экспериментах квантовая интерференционная лидарная система достигла обнаружения поля ветра на горизонтальном расстоянии 16 км с энергией 70 мкДж, улучшив чувствительность обнаружения в 7 раз по сравнению с существующими лидарными системами, с постоянством обнаружения поля ветра R² = 0,997.


PhysReal • Физическая реальность

Администрация не несет ответственности за достоверность информации, опубликованной в рекламных объявлениях. Материалы, опубликованные в блогах, отражают позиции их авторов, которые могут не совпадать с мнением редакции. Использование публикаций сайта разрешается при наличии прямой ссылки на PhysReal.
Контактный E-mail:

Telegram: https://t.me/physreal
ВКонтакте: https://vk.com/physreal
RSS (XML): Новости физики

Copyright © 2025 Development by Programilla.com