2024-06-26

Впервые удалось однократно диагностировать ускорение электронов через лазерный кильватерный ускоритель по криволинейной траектории

Согласно недавнему исследованию, проведенному исследователями Мичиганского университета, корректировка экспериментальных методов позволила впервые "однократно" диагностировать ускорение электронов через лазерный кильватерный ускоритель по криволинейной траектории. Результаты опубликованы в журнале Physical Review Letters. Устройство запускает лазер через пар, создавая ионизированную плазму, а затем отделяет электроны от ионов, создавая "след за собой", похожий на след, который оставляет лодка, двигаясь по воде. Затем вводится электронный луч в ускоритель, который "плывет" по следу, быстро набирая энергию. Свойства фотонов, а именно энергии фотонов и угловое распределение, полностью определяются свойствами электронного пучка. Таким образом, измерив свойства пространственно разрешенного фотона, исследователи смогли собрать воедино процесс ускорения электронов на основе одного эксперимента.

2024-06-21

Сверхбыстрая генерация скрытых фаз посредством электронного фотовозбуждения с настроенной энергией в магнетите

Исследователи из EPFL обнаружили, что, освещая материал, называемый магнетитом, светом разной длины волны (цвета), они могут изменить его состояние, например, сделав его более или менее подходящим для электричества. Это открытие может привести к новым способам разработки новых материалов для электроники, таких как запоминающие устройства, датчики и другие устройства, которые полагаются на быструю и эффективную реакцию материалов. В экспериментах использовались две разные длины волн света: ближняя инфракрасная (800 нм) и видимая (400 нм). При возбуждении световыми импульсами длиной 800 нм структура магнетита нарушалась, создавая смесь металлических и изолирующих областей. Напротив, световые импульсы длиной 400 нм сделали магнетит более стабильным изолятором. Когда свет с длиной волны 800 нм падал на магнетит, он вызывал быстрое сжатие моноклинной решетки магнетита, превращая ее в кубическую структуру. Это происходит в три этапа в течение 50 пикосекунд и предполагает, что внутри материала происходят сложные динамические взаимодействия. И наоборот, видимый свет с длиной волны 400 нм заставил решетку расширяться, укрепляя моноклинную решетку и создавая более упорядоченную фазу — стабильный изолятор.

2024-06-13

Лабораторная реализация релятивистских пучков парной плазмы

Плазма широко распространена в условиях глубокого космоса, ее производство в лабораторных условиях — сложная задача. Впервые, международная группа ученых, в том числе исследователи из Лаборатории лазерной энергетики (LLE) Рочестерского университета, экспериментально сгенерировала релятивистские электрон-позитронные парные плазменные пучки высокой плотности, производя на два-три порядка величины больше пар, чем сообщалось ранее. Выводы команды опубликованы в журнале Nature Communications. Этот прорыв открывает двери для последующих экспериментов, которые могут привести к фундаментальным открытиям о том, как работает Вселенная.

2024-06-11

Впервые обнаружен термоэлектрический эффект между двумя жидкими материалами

Трио физиков из Университета Сорбонны во Франции впервые наблюдали термоэлектрический эффект между двумя жидкими материалами. В своем исследовании, опубликованном в «Трудах Национальной академии наук», Марлон Верне, Стефан Фов и Кристоф Гиссинджер соединили два типа жидких металлов вместе при комнатной температуре и подвергли их воздействию температурного градиента. Окружающая среда представляла собой цилиндр с еще одним цилиндром меньшего размера в центре. Исследователи вылили жидкую ртуть во внешний цилиндр, а затем вылили на него жидкий галлий. Галлий плавал, потому что он был легче. Затем они добавили охлаждающее устройство для охлаждения внешних стенок внешнего цилиндра и нагревательное устройство для нагрева стенок внутреннего цилиндра. Это привело к температурному градиенту между двумя металлами. Затем команда вставила провод во внешний цилиндр в место встречи двух металлов — другой конец был подключен к устройству для измерения электричества. Исследователи обнаружили, что добавление температурного градиента привело к термоэлектрическому эффекту на границе раздела двух жидких металлов. Они также обнаружили, что он был турбулентным — ток бежал по петле от горячей части цилиндра к холодной части.

2024-06-10

Турбулентный переход в магнитно-удерживаемой плазме водорода и дейтерия

Чтобы инициировать реакцию термоядерного синтеза, дейтерий и тритий необходимо нагреть до температуры более 100 миллионов градусов Цельсия. Так образуется плазма, которая затем поддерживается сильной магнитной «клеткой». Однако при возбуждении турбулентности в плазме может произойти утечка. Таким образом, турбулентность является важной темой в исследованиях термоядерного синтеза, и ее подавление имеет важное значение для реализации термоядерной электростанции. Для подавления турбулентности необходимо понимание физического механизма ее возбуждения, и LHD (Large Helical Device — "большое спиральное устройство" для термоядерного синтеза, расположенное в Токи, Гифу, Япония) является идеальным приспособлением для решения этой задачи. Учёные успешно измерили не только амплитуду турбулентности, но также ее пространственный профиль и направление распространения с помощью прецизионной лазерной диагностики. Ещё была исследована зависимость турбулентности от массы ионов. Статья опубликована в журнале Physical Review Letters.

2024-06-07

Терагерцовая спектроскопия без Фурье

Исследователи из физического факультета МГУ им. М.В. Ломоносова предложили модификацию метода терагерцовой спектроскопии, позволяющую обойти паразитные пики в преобразовании Фурье, связанные с отражением волны от границ материала или слоев внутри материала, что ухудшает качество исследования, если изучаемой средой являются пленки или слоистые структуры. Модификация метода основана на том, что сравниваются не фурье-образы, а амплитуды временных зависимостей электромагнитного поля. Чтобы увидеть вклад материальных констант образца, необходим дополнительный световой импульс. Исходный луч фемтосекундного лазера делится не на две, а на три составляющие: генерирующая, детектирующая и фотоиндуцирующая. Генерирующий импульс попадает на нелинейный кристалл, где он преобразуется в терагерцовое излучение, и затем освещает исследуемый образец. Фотоиндуцирующий импульс, прошедший через пространственный модулятор, падает на исследуемый образец, формируя в его области неоднородную засветку в виде дифракционной решетки, период которой обеспечивает дифракцию терагерцового излучения. В результате взаимодействия фотоиндуцирующего импульса с образцом в тех областях материала, куда попадает засветка, изменяется концентрация свободных носителей, или возбуждаются поляритоны, и при прохождении терагерцового импульса образуется импульс-сателлит. Отношение амплитуд детектирующего импульса и импульса-сателлита, с учетом известного периода дифракционной решетки, дает возможность определять материальные константы образца.

2024-06-04

Обнаружен квантово-акустический сдвиг пика Друде в странных металлах

Исследователи из Гарвардского университета, Университета Сабанчи и Пекинского университета недавно собрали данные, которые могут пролить свет на происхождение высокотемпературных пиков поглощения, наблюдаемых в странных металлах (классе материалов, которые не соответствуют традиционной теории). Работа, опубликованная в Physical Review Letters, однозначно экспериментально показала, что без какой-либо точной настройки, захвата повышения или подгонки параметров, представлено явление квантово-акустического смещения пика Друде, которое включает в себя температурно-зависимый сдвиг и уширение пика Друде. Результаты предполагают, что в основе DDP (смещенные пики Друде) может лежать переходный процесс локализации, а именно тонкий подъем и спад андерсоновской локализации электронов, вызванный полем динамического беспорядка и тепловыми колебаниями решетки.

2024-05-31

Выявление трехмерного расположения полярной топологии в наночастицах

Исследовательская группа впервые экспериментально прояснила трехмерное вихревое распределение поляризации внутри сегнетоэлектрических наночастиц посредством международных совместных исследований с POSTECH, SNU, KBSI, LBNL. и Университет Арканзаса. Работа была опубликована в журнале Nature Communications под названием «Выявление трехмерного расположения полярной топологии в наночастицах». Около 20 лет назад учёные теоретически предсказали, что внутри сегнетоэлектрических наноточек может возникать уникальная форма распределения поляризации, имеющая тороидальную вихревую форму, и при должном управлении распределением вихрей можно более чем в 10 000 раз повысить плотность устройств памяти. Метод атомно-электронной томографии успешно решил задачу 20-ти летней давности. Он работает путем получения изображений наноматериалов с просвечивающим электронным микроскопом с атомным разрешением под разными углами наклона, а затем реконструирует их обратно в трехмерные структуры с использованием передовых алгоритмов реконструкции.

2024-05-29

Физикам удалось генерировать распространяющиеся спиновые волны на наноуровне и открыть новый путь их модуляции и усиления

Исследователям из Ланкастерского университета и Радбаудского университета в Неймегене удалось генерировать распространяющиеся спиновые волны на наноуровне и открыть новый путь их модуляции и усиления. Их открытие, опубликованное в журнале Nature, может проложить путь к развитию квантовых информационных технологий без диссипации. Поскольку спиновые волны не используют электрические токи, эти чипы будут свободны от связанных с ними потерь энергии. Учёные использовали тот факт, что максимально возможные частоты вращения спинов можно обнаружить в материалах, в которых соседние спины наклонены друг относительно друга. Чтобы возбудить столь быструю спиновую динамику, они использовали очень короткий импульс света, длительность которого короче периода спиновой волны, т.е. менее триллионной доли секунды. Секрет генерации сверхбыстрой спиновой волны на наноуровне заключается в энергии фотонов светового импульса.

2024-05-29

Новое устройство точно контролирует излучение фотонов для более эффективных портативных экранов

Недавно группа химиков, математиков, физиков и наноинженеров из Университета Твенте в Нидерландах разработала устройство, позволяющее контролировать излучение фотонов с беспрецедентной точностью. Эта технология может привести к созданию более эффективных миниатюрных источников света, чувствительных датчиков и стабильных квантовых битов для квантовых вычислений. Используя полимерные щётки (крошечные химические цепочки, способные удерживать источники фотонов в определенном месте) и добавив нанофотонные инструменты, эксперимент показал, что возбужденные источники света подавляются почти в 50 раз. В этой ситуации источник света остается возбужденным в 50 раз дольше, чем обычно. Спектр очень хорошо соответствует теоретическому, рассчитанному с помощью современных математических инструментов.


PhysReal • Физическая реальность

Администрация не несет ответственности за достоверность информации, опубликованной в рекламных объявлениях. Материалы, опубликованные в блогах, отражают позиции их авторов, которые могут не совпадать с мнением редакции. Использование публикаций сайта разрешается при наличии прямой ссылки на PhysReal.
Контактный E-mail:

Telegram: https://t.me/physreal
ВКонтакте: https://vk.com/physreal
RSS (XML): Новости физики

Copyright © 2024 Development by Programilla.com