2024-11-12

Расширение запрещенной зоны по импульсу в фотонных кристаллах времени за счет резонансов

Международная исследовательская группа впервые разработала реалистичные фотонные кристаллы времени — экзотические материалы, которые экспоненциально усиливают свет. Этот прорыв открывает захватывающие возможности в таких областях, как связь, визуализация и зондирование, закладывая основу для более быстрых и компактных лазеров, датчиков и других оптических устройств. Исследование опубликовано в журнале Nature Photonics. В работе учёные предлагают с помощью теоретических моделей и электромагнитного моделирования первый практический подход к созданию "по-настоящему оптических" фотонных кристаллов времени. Используя массив крошечных кремниевых сфер, они предсказывают, что особые условия, необходимые для усиления света, которые ранее были недоступны, наконец-то могут быть достигнуты в лаборатории с использованием известных оптических методов.

2024-11-11

Контролируемый перенос атомов с помощью когерентного туннелирования между оптическими пинцетами

Экспериментальная установка, построенная на физическом факультете Техниона, демонстрирует перенос атомов из одного места в другое посредством квантового туннелирования между оптическими пинцетами. Исследование, проведенное профессором Йоавом Саги и докторантом Янаем Флоршаймом из Института твердого тела, было опубликовано в журнале Science Advances. В основе эксперимента лежит оптический пинцет — экспериментальный инструмент для захвата атомов, молекул и даже живых клеток с помощью оптического потенциала, создаваемого лазерными лучами, сфокусированными в пятне микронного размера.

2024-11-05

Обнаружен полностью оптический аналог ядерного магнитного резонанса с квантовыми жидкостями света

Исследователи из Сколтеха, Варшавского университета и Исландского университета продемонстрировали, что оптическими средствами можно возбудить и перемешать экситон-поляритонный конденсат, который излучает линейно поляризованный свет с осью поляризации, следующей за направлением перемешивания. Вращение линейной поляризации излучаемого света соответствует перемешиванию спина поляритона. Скорость такой модуляции во времени может достигать ГГц благодаря сверхбыстрой динамике поляритонной системы. Обнаружено, что эта прецессия происходит только при определенных резонансных условиях внешнего перемешивания и внутренних параметров системы. Работа опубликована в журнале Optica. Экспериментальная работа полностью проводилась в Центре фотоники Сколтеха.

2024-10-29

Эксперимент с немонотонной S-образной реологией

Исследователи Лоран Талон и Доминик Сален из Университета Париж-Сакли, Париж, Франция, теперь показали, что при определенных обстоятельствах суспензии кукурузного крахмала могут отображать полосатый рисунок с чередующимися областями высокой и низкой вязкости. Эта работа была опубликована в Европейском физическом журнале E. Тэлон и Салин решили проверить правдоподобность моделируемой реологии 2014 года. Используя суспензию кукурузного крахмала в прямой цилиндрической капиллярной трубке, учёные наблюдали ожидаемую немонотонную зависимость между давлением и скоростью потока, но не совсем так, как предполагалось: скорость потока сначала увеличивалась с давлением, но затем внезапно уменьшалась.

2024-10-28

Ускорение положительных мюонов радиочастотным резонатором

Команда инженеров и физиков, работающих в Японском исследовательском комплексе протонных ускорителей, продемонстрировала ускорение положительных мюонов от тепловой энергии до 100 кэВ — впервые мюоны были ускорены стабильным образом. Группа опубликовала документ, описывающий свою работу над сервером препринтов arXiv. К сожалению, такие усилия сдерживаются чрезвычайно короткой продолжительностью жизни мюонов — примерно 2 микросекунды, — после которой они распадаются на электроны и нейтрино. Еще больше усложняет задачу их склонность беспорядочно перемещаться. Используя новую технику, учёные преодолели подобные препятствия.

2024-10-21

Открыта универсальная неравновесная квантовая динамика в случайно взаимодействующих спиновых моделях

Новое исследование выявило универсальную динамику вдали от равновесия в моделях случайно взаимодействующих спинов, дополняя тем самым хорошо зарекомендовавшую себя универсальность в физике низкоэнергетического равновесия. Твердотельные ядерные спиновые системы по своей природе представляют собой сложные квантовые системы многих тел, которыми можно точно управлять с помощью технологий квантового контроля, что позволяет реализовать различные модели спина многих тел. Это обеспечивает естественную и настраиваемую экспериментальную платформу для изучения неравновесной динамики квантовых систем многих тел. Учёные разработали последовательности импульсов для высокоточного управления спинами ядер H в порошке адамантана (C₁₀H₁₆) (каждое зерно содержит примерно 10⁹ до 10¹² молекул) и реализовали случайно взаимодействующие спиновые модели с регулируемыми анизотропными параметрами. Хаотичность возникает из-за случайной ориентации между осями решетки в разных зернах и статического магнитного поля. Так было обнаружено новое явление: динамика спиновой деполяризации показала четкий переход от монотонного к колебательному затуханию при изменении анизотропного параметра. Оказалось, что поведение динамики спиновой деполяризации можно универсально описать двумя параметрами.

2024-10-15

Модификация кварк-глюонного распределения в ядрах с помощью коррелированных пар нуклонов

До сих пор существовало два параллельных описания атомных ядер: одно на основе протонов и нейтронов, которые мы можем видеть при низких энергиях, а другое, для высоких энергий, на основе кварков и глюонов. В дан6ной работе физикам удалось вывести эти два до сих пор разделенных мира вместе. Этот давний тупик был преодолен только сейчас в статье, опубликованной в журнале Physical Review Letters. Ее основными авторами являются ученые международной коллаборации nCTEQ по кварк-глюонным распределениям, в том числе из Института ядерной физики Польской академии наук (IFJ PAN) в Кракове. Результаты столкновений атомных ядер с электронами достаточно хорошо воспроизводятся с использованием моделей, предполагающих существование только нуклонов для описания низкоэнергетических столкновений и только партонов для высокоэнергетических столкновений. Однако до сих пор эти два описания не удалось объединить в целостную картину. В своей работе физики из IFJ PAN использовали данные о столкновениях высоких энергий, в том числе собранные на ускорителе БАК в лаборатории ЦЕРН в Женеве. Основная цель заключалась в изучении партонной структуры атомных ядер при высоких энергиях, которая в настоящее время описывается партонными функциями распределения. Новый подход позволил учёным определить для 18 исследованных атомных ядер функции распределения партонов в атомных ядрах, распределения партонов в коррелированных парах нуклонов и даже количество таких коррелированных пар. Результаты подтвердили наблюдение, известное из экспериментов с низкими энергиями, о том, что большинство коррелирующих пар представляют собой пары протон-нейтрон (этот результат особенно интересен для тяжелых ядер, например, золота или свинца).

2024-10-04

Прямое измерение фазового соотношения тока sin(2φ) в графеновом сверхпроводящем квантовом интерференционном устройстве

Исследователи из Университета Гренобль-Альпы недавно продемонстрировали прямое измерение тонкого эффекта, а именно фазового соотношения тока sin (2φ), в сверхпроводящем квантовом интерференционном устройстве на основе графена, основанном на перестраиваемых затворах графеновых джозефсоновских переходах. Используемый метод измерений, изложенный в статье, опубликованной в Physical Review Letters, может способствовать разработке более стабильных сверхпроводящих кубитов, менее склонных к декогеренции. Экспериментальная установка основывалась на усовершенствованном методе одновременного контроля и считывания текущего фазового соотношения пары джозефсоновских переходов. Показано, что, объединив два графеновых джозефсоновских перехода в сверхпроводящем квантовом интерференционном устройстве, можно получить фазовое соотношение тока sin(2φ) благодаря контролю интерференционных эффектов между куперовскими парами с помощью магнитного поля.

2024-10-03

Физики добились сильной связи андреевских кубитов через микроволновый резонатор

Физикам из Базельского университета впервые удалось когерентно соединить два андреевских кубита на макроскопическом расстоянии. Они добились этого с помощью микроволновых фотонов, генерируемых в узком сверхпроводящем резонаторе. Результаты экспериментов и сопутствующих расчетов были недавно опубликованы в журнале Nature Physics, заложив основу для использования связанных андреевских кубитов в квантовой связи и квантовых вычислениях. Результаты показывают превосходное согласие с теоретическими моделями.

2024-09-27

Управляемые монополи орбитального углового момента в хиральных топологических полуметаллах

Благодаря сочетанию надежной теории и экспериментов на Swiss Light Source SLS в Институте Пауля Шеррера PSI, было продемонстрировано существование монополей орбитального углового момента электронов (ОАМ), вращающихся вокруг атомного ядра. Что стало предметом большого теоретического интереса, поскольку они предлагают значительные практические преимущества для развивающейся области орбитроники, потенциальной энергоэффективной альтернативы традиционной электронике. Открытие опубликовано в журнале Nature Physics. Международная исследовательская группа под руководством ученых из Института Пауля Шеррера PSI и Институтов Макса Планка в Галле и Дрездене (Германия) продемонстрировала, что хиральные топологические полуметаллы — новый класс материалов, открытый в PSI в 2019 году, — обладают свойствами, которые делают их весьма практичным выбором для генерации токов ОАМ. Для эксперимента была использована техника, известная как круговой дихроизм в угловой фотоэмиссионной спектроскопии, или CD-ARPES, использующей циркулярно поляризованные рентгеновские лучи от источника синхротронного света. Предположение заключается в том, что если вы используете циркулярно поляризованный свет, вы измеряете то, что прямо пропорционально OAM.


PhysReal • Физическая реальность

Администрация не несет ответственности за достоверность информации, опубликованной в рекламных объявлениях. Материалы, опубликованные в блогах, отражают позиции их авторов, которые могут не совпадать с мнением редакции. Использование публикаций сайта разрешается при наличии прямой ссылки на PhysReal.
Контактный E-mail:

Telegram: https://t.me/physreal
ВКонтакте: https://vk.com/physreal
RSS (XML): Новости физики

Copyright © 2025 Development by Programilla.com