2024-09-20

В сочетании с тонкой пленкой тяжелого металла и ферромагнитными монослоями графен усиливает эффект стабилизации скирмионов в спинтроники

На границе раздела графена и тяжелого металла возникает сильная спин-орбитальная связь, которая приводит к различным квантовым эффектам, включая спин-орбитальное расщепление уровней энергии (эффект Рашбы) и скос в выравнивании спинов (взаимодействие Дзялошинского-Мория). Эффект скоса спинов особенно необходим для стабилизации скирмионов, которые особенно подходят для спинтроники. В статье, опубликованной в журнале ACS Nano, испано-немецкая группа учёных показала, что эти эффекты значительно усиливаются, когда несколько монослоев ферромагнитного элемента кобальта вставляются между графеном и тяжелым металлом (в данном случае: иридием). Образцы выращивались на изолирующих подложках, что является необходимым условием для внедрения многофункциональных спинтронных устройств, использующих эти эффекты. 

2024-09-17

Оптически обнаруженный когерентный контроль молекулярных спинов при комнатной температуре

В статье «Оптически обнаруживаемое когерентное управление молекулярными спинами при комнатной температуре», опубликованной в журнале Physical Review Letters, учёные показывают, как можно манипулировать определенным квантовым свойством, известным как «спин» в органических молекулах, и измерять его с помощью видимого света, и все это при комнатной температуре. Были использованы лазеры для выравнивания спинов электронов в молекулах, которые можно рассматривать как крошечные квантово-механические магниты. При тщательно направленных импульсах микроволнового излучения, получилось управлять спиновыми состояниями в желаемые квантовые состояния. Далее, используя количество видимого света, получилось измерять состояние спинов испускаемого молекулами от второго лазерного импульса, который менялся в зависимости от квантового состояния спинов. В демонстрации доказательства принципа действия была использована органическая молекула под названием пентацен, включенная в две формы материала под названием пара-терфенил, как в кристаллах, так и в тонкой пленке. Продемонстрировано, что можно оптически обнаруживать квантовую когерентность (временную шкалу, в которой существуют квантовые состояния) молекул в течение микросекунды при комнатной температуре, что намного дольше времени, необходимого для манипулирования состояниями.

2024-09-16

Гигантский нелинейный эффект Холла в теллуре при комнатной температуре

Учёные обнаружили значительные нелинейные эффекты Холла (НЭХ) и беспроводного выпрямления при комнатной температуре в элементарном полупроводнике теллуре (Te). Исследование опубликовано в Nature Communications. Был обнаружен значительный НЭХ при комнатной температуре в тонких чешуйках Te с настраиваемыми выходами напряжения Холла, модулированными внешними напряжениями затвора. При 300 К максимальный выход второй гармоники может достигать 2,8 мВ, что на порядок выше предыдущих данных. С помощью дальнейших экспериментов и теоретического анализа получено, что наблюдаемый НЭХ в тонких чешуйках Te в первую очередь обусловлен внешним рассеянием, причем нарушение симметрии поверхности тонкой структуры чешуек играет решающую роль. Физики заменили переменный ток радиочастотными (РЧ) сигналами, реализовав беспроводное РЧ-выпрямление в тонких хлопьях Те. Они добились стабильного выпрямленного выходного напряжения в широком диапазоне частот от 0,3 до 4,5 ГГц.

2024-09-12

Предложен инновационный метод обнаружения гравитационных волн с использованием резонанса Мессбауэра

Ученые из Института физики высоких энергий (IHEP) Китайской академии наук предложили инновационный метод обнаружения гравитационных волн с использованием резонанса Мессбауэра. Их выводы, недавно опубликованные в Science Bulletin, подчеркивают новый подход, который может произвести революцию в изучении гравитационных волн. Физики ИФВЭ исследуют потенциал стационарной мёссбауэровской системы, где гравитационные сдвиги частоты, вызванные изменениями высоты, могли бы заменить традиционный доплеровский сдвиг, используемый в дифференциальной мёссбауэровской спектрометрии. Для изотопов ¹⁰⁹Ag, которые обладают чрезвычайно узкой относительной шириной линии 10⁻²², этот метод позволяет пространственно локализовать мёссбауэровский резонанс с точностью до 10 микрон. Проходя, гравитационные волны вызывают энергетические флуктуации в мёссбауэровских фотонах. Под воздействием локального гравитационного поля эти флуктуации приводят к вертикальным смещениям резонансного пятна. В статье предлагается схема, в которой детекторы располагаются в круговой конфигурации вокруг активированного источника серебра, что повышает чувствительность не только к силе гравитационных волн, но и к направлению их распространения и углу поляризации.

2024-09-09

Доказана 50-ти летняя теория эффекта Зельдовича для усилении электромагнитных полей вращающимся телом

Физики из Университета Саутгемптона впервые проверили и доказали 50-летнюю теорию с использованием электромагнитных волн. Они показали, что энергию волн можно увеличить, отражая «скрученные волны» — волны с угловым моментом — от объекта, вращающегося определенным образом. Это известно как «эффект Зельдовича», названный в честь советского физика Якова Зельдовича, который разработал теорию, основанную на этой идее, в 1970-х годах. До сих пор считалось, что это ненаблюдаемо с помощью электромагнитных полей. Результаты исследования ученых опубликованы в журнале Nature Communications. Доказательство эффекта Зельдовича в различных физических системах, как акустических, так и теперь электромагнитных цепях, предполагает, что он имеет довольно фундаментальную природу. Электромагнитные тесты также прокладывают путь к наблюдению эффекта на квантовом уровне, где волны могут генерироваться цилиндром, усиливающим квантовый вакуум.

2024-09-04

Крупный прорыв в области ядерных часов прокладывает путь к сверхточному измерению времени

Международная исследовательская группа под руководством ученых из JILA, совместного института Национального института стандартов и технологий (NIST) и Университета Колорадо в Боулдере, продемонстрировала ключевые элементы ядерных часов. Ядерные часы — это новый тип устройства для измерения времени, который использует сигналы из ядра атома. Результаты исследования были опубликованы в выпуске журнала Nature от 4 сентября в качестве заглавной статьи. Учёные использовали специально разработанный ультрафиолетовый лазер для точного измерения частоты скачка энергии в ядрах тория, встроенных в твердый кристалл. Они также использовали оптическую частотную гребенку, которая действует как чрезвычайно точная световая линейка, для подсчета количества циклов ультрафиолетовой волны, которые создают этот скачок энергии. Хотя эта лабораторная демонстрация не является полностью разработанными ядерными часами, она содержит все основные технологии для них.

2024-09-02

Хиральное квантовое нагревание и охлаждение с помощью оптически управляемого иона

Тепловые двигатели, преобразующие тепло в полезную работу, жизненно важны в современном обществе. С развитием нанотехнологий изучение квантовых тепловых двигателей (QHE) имеет решающее значение для проектирования эффективных систем и понимания квантовой термодинамики. QHE, работающие как открытые квантовые системы, обмениваются энергией с внешними термальными ваннами, что приводит к квантовым скачкам. Поэтому динамика QHE может быть полностью описана и хорошо понята только с использованием исключительных точек Лиувилля (LEP), а не традиционных гамильтоновых EP, особенно для QHE на основе кубитов. В статье, опубликованной в журнале Light: Science & Applications, группа учёных демонстрирует хиральный квантовый нагрев и охлаждение, а также перенос квантового состояния с использованием оптически управляемого иона. Работа раскрывает хиральные термодинамические свойства квантовых систем с неэрмитовой динамикой путем динамического обхода замкнутого контура без вовлечения LEP. Направление обхода замкнутого контура влияет на то, действует ли система как тепловой двигатель или холодильник. Их исследование подчеркивает роль неадиабатических переходов и процесса Ландау-Зенера-Штюкельберга (LZS) в достижении хиральной операции. Этот эксперимент впервые связывает процесс LZS для хиральности с термодинамическими эффектами, связанными с LEP.

2024-08-28

Улучшение калибровки уравнения состояния в физике сверхвысоких давлений

В статье, недавно опубликованной в журнале Journal of Applied Physics, международная группа ученых из Ливерморской национальной лаборатории им. Э. Лоуренса (LLNL), Аргоннской национальной лаборатории и Deutsches Elektronen-Synchrotron разработала новую конфигурацию образца, которая повышает надежность измерений уравнения состояния в режиме давления, ранее недостижимом в ячейке с алмазными наковальнями. С помощью этой конфигурации можно проводить высококачественные измерения статического уравнения состояния при давлении свыше 5 миллионов атмосфер, вплоть до внутренних условий Нептуна. Учёные использовали разработанную LLNL тороидальную ячейку с алмазными наковальнями, способную регулярно достигать > 300 ГПа с диаметром камеры образца ~ 6 мкм. Это примерно в 20 раз меньше ширины человеческого волоса. Затем в этой небольшой камере образца ученые микроизготовили пакет образца в 10-шаговом процессе, в котором целевой материал был внедрен в однородную капсулу из мягкого металла, которая служит средой, передающей давление. Эксперименты проводились в Аргоннской национальной лаборатории, сектор 16 HPCAT и на Deutsches Elektronen-Synchrotron PETRA-III.

2024-08-26

Когерентный акустический контроль орбитальных состояний дефектов в пределе сильного воздействия

Исследователи из Корнелльского университета продемонстрировали, что акустические звуковые волны можно использовать для управления движением электрона, вращающегося вокруг дефекта решетки в алмазе. Эта технология потенциально может повысить чувствительность квантовых датчиков и использоваться в других квантовых устройствах. Работа опубликована в журнале PRX Quantum. Был построен микроскопический динамик на поверхности алмазного чипа, который работал на частоте, соответствующей электронному переходу. Используя методы, которые применяются в магнитно-резонансной томографии, был продемонстрирован когерентный контроль одного электрона внутри алмазного чипа. Учёные сделали орбитальную версию спинового резонанса: взяли те инструменты, которые мы знаем из спинового резонанса, например, когерентный контроль и осцилляции Раби, и с помощью акустического резонатора в пару гигагерц отобразили это на орбитальные состояния и увидели, что эти методы по-прежнему применимы.

2024-08-22

Переработка грифеля карандаша в оптический материал с использованием плазмы

Как превратить грифель карандаша в полезные оптические материалы? Ответ сводится к одному слову: плазма, электрически заряженное газообразное состояние. Учёные изучили влияние более длительной плазменной обработки свинца. Для этого они подготовили образцы грифеля карандаша и поместили их в плазменную камеру на разные периоды времени, от десяти секунд до более трех минут. После этого они измерили изменения в спектрах отражения образцов, то есть интенсивность, с которой каждый обработанный образец отражает падающий свет в зависимости от его частоты. Обнаружено, что облучение грифеля карандаша плазмой в течение длительного времени привело к появлению нового оптического материала, который вызывает интерференцию в ближнем инфракрасном и среднем инфракрасном диапазонах, которые находятся ниже области длин волн видимого света. Это было связано с большей толщиной слоя глины, обнажаемого плазменным травлением. Чтобы продемонстрировать наглядное применение своей техники, команда выгравировала буквы и цифры на поверхности пластины карандашного грифеля таким образом, что символы были видны только при использовании инфракрасной камеры.


PhysReal • Физическая реальность

Администрация не несет ответственности за достоверность информации, опубликованной в рекламных объявлениях. Материалы, опубликованные в блогах, отражают позиции их авторов, которые могут не совпадать с мнением редакции. Использование публикаций сайта разрешается при наличии прямой ссылки на PhysReal.
Контактный E-mail:

Telegram: https://t.me/physreal
ВКонтакте: https://vk.com/physreal
RSS (XML): Новости физики

Copyright © 2025 Development by Programilla.com