2023-02-10

Жидкий лазер, надежный в воздухе и настраиваемый ветром

Ученые из Цукубского исследовательского центра энергетических материаловедения при Университете Цукубы продемонстрировали простой метод получения микрокапель ионной жидкости, которые работают как гибкие, долговечные и пневматически настраиваемые лазеры. В отличие от существующих «капельных лазеров», которые не могут работать в атмосфере, эта новая разработка может создать лазеры для повседневных условий. Исследование опубликовано в журнале Laser & Photonics Reviews.

2023-02-01

Генерация нейтронов с помощью лазера, реализующая однократную резонансную спектроскопию

Ученые из Института лазерной техники Университета Осаки определили механизм и функциональную форму выхода нейтронов из лазерного источника и использовали его для проведения анализа нейтронного резонанса намного быстрее, чем обычные методы. Эта работа может помочь расширить применение неинвазивного тестирования в производстве и медицине. Группа исследователей под руководством Университета Осаки разработала лазерный источник нейтронов и определила новый закон масштабирования между интенсивностью лазера и количеством произведенных нейтронов. Они обнаружили, что увеличение интенсивности дает нейтроны, пропорциональные четвертой степени, что может привести к очень большим изменениям, основанным на относительно небольших вложениях дополнительной энергии.

2023-01-26

Установлен рекорд скорости в рукотворном управлении электрическими токами в твердых материалах

С помощью сверхбыстрых лазерных вспышек ученые из Университета Ростока в сотрудничестве с исследователями из Института исследований твердого тела им. Макса Планка в Штутгарте сгенерировали и измерили самый короткий электронный импульс на сегодняшний день. Электронный импульс был создан с помощью лазеров для удаления электронов из крошечного металлического наконечника и длился всего 53 аттосекунды. Мероприятие установило новый рекорд скорости в рукотворном управлении электрическими токами в твердых материалах.

2023-01-16

Отражение молнии лазерным громоотводом

Европейский консорциум, состоящий из Женевского университета (UNIGE), Политехнической школы (Париж), EPFL, hes-so и научных лазеров TRUMPF (Мюнхен), разработал многообещающую альтернативу: лазерный громоотвод или LLR. После тестирования LLR на вершине Сантис (в Швейцарии) у исследователей теперь есть доказательства его осуществимости. Стержень даже в плохую погоду может отразить молнию на несколько десятков метров. Результаты этого исследования опубликованы в журнале Nature Photonics. После первого случая молнии с использованием лазера было обнаружено, что разряд может следовать за лучом почти на 60 метров, прежде чем достигнет башни, а это означает, что радиус защитной поверхности увеличился со 120 м до 180 м. Долгосрочная цель включает использование LLR для удлинения 10-метрового громоотвода на 500 м.

2023-01-11

Визуализация сложной электронной волновой функции с использованием аттосекундной технологии высокого разрешения

В недавнем исследовании, опубликованном в журнале Physical Review A, учёные использовали подход с использованием аттосекундного лазерного импульса или генерации высоких гармоник для визуализации сложной волновой функции. Аттосекундный лазерный импульс состоит из когерентного света с длиной волны, намного меньшей, чем ультрафиолетовое излучение, называемого экстремальным ультрафиолетовым (EUV) светом. Когда этот импульс облучает газ, выбрасывается электрон.

2023-01-05

Новый метод спектроскопии улучшает обнаружение микроэлементов в жидкости

Как сообщается в Advanced Photonics Nexus, исследователи недавно объединили FIBS (спектроскопия разрушения нитей) и GIBS (спектроскопия пробоя, вызванная плазменной решеткой) в качестве эффективного метода чувствительного обнаружения следов металлов в жидкости. Они продемонстрировали сочетание сильных нелинейных взаимодействий нитей (компланарных и неколлинеарных) с различными плазменными решетками для достижения технического новшества, названного «F-GIBS» (спектроскопия разрушения, вызванная нитями и плазменными решетками). F-GIBS был реализован с использованием струй жидкости для анализа водных растворов.

2022-12-19

Тюменские физики предложили прибор для точности измерения свойств материалов

Ученые из ТюмГУ создали прибор для высокочувствительного измерения физико-химических и тепловых свойств жидкостей и твердых тел. Ученые разработали установку для сканирования лазерным листом деформированной поверхности жидкого слоя. Его точность была проверена путем сканирования поверхности твердого стандартного образца с заданным распределительным профилем. Исследуемая система представляла собой силиконовое масло на эбонитовой подложке, нагреваемой лазерным лучом с распределением интенсивности луча.

2022-12-14

Лазер управляет сверхбыстрым жидкостным переключателем терагерцового излучения

Исследователи из Рурского университета в Бохуме (Германия) разработали сверхбыстрый переключатель на водной основе. Короткий, но мощный лазерный импульс переводит воду в проводящее состояние менее чем за одну триллионную долю секунды, и в это время она ведет себя почти как металл. Это делает его быстрее, чем самая высокая скорость переключения полупроводников на сегодняшний день. Адриан Бухманн, доктор Клаудиус Хоберг и доктор Фабио Новелли из Рурского исследовательского кластера передового опыта в области сольватации RESOLV опубликовали свои выводы в журнале APL Photonics 6 декабря 2022 года.

2022-12-13

Для точного наведения лазерного луча использована новая метаповерхность

Российские учёные в составе международного научного коллектива продемонстрировали возможность удвоения разрешения при управление пучком света с помощью метаповерхности на основе таммовского плазмон-поляритона. Обнаруженный эффект может быть использован при проектировании беззеркальных лидаров и интеллектуальных телекоммуникаций. Работа опубликована в журнале Materials. Исследование поддержано грантом РНФ № 22-42-08003.

2022-11-24

Продемонстрирована первая в мире непрерывная генерация лазерного диода глубокого ультрафиолета при комнатной температуре

Исследовательская группа во главе с лауреатом Нобелевской премии 2014 года Хироши Амано из Института материалов и систем устойчивого развития (IMaSS) Университета Нагоя в центральной Японии в сотрудничестве с корпорацией Asahi Kasei успешно провела первую в мире непрерывную генерацию глубокого излучения при комнатной температуре — ультрафиолетовый лазерный диод (длины волн до диапазона УФ-С). Эти результаты, опубликованные в Applied Physics Letters, представляют собой шаг к широкому использованию технологии с потенциалом для широкого спектра применений, включая медицину.


PhysReal • Физическая реальность

Администрация не несет ответственности за достоверность информации, опубликованной в рекламных объявлениях. Материалы, опубликованные в блогах, отражают позиции их авторов, которые могут не совпадать с мнением редакции. Использование публикаций сайта разрешается при наличии прямой ссылки на PhysReal.
Контактный E-mail:

Telegram: https://t.me/physreal
ВКонтакте: https://vk.com/physreal
RSS (XML): Новости физики

Copyright © 2024 Development by Programilla.com