2023-09-13

Новая система уравнений предсказывает гидродинамическое поведение магнонов в магните

Недавние исследования железосодержащих магнитных изоляторов в сверхчистых системах привлекли все большее внимание к гидродинамическому поведению «магнонов» и их сильным взаимодействиям с другими частицами. Изучения рассеиваемых магнонов и тепловых токов показали значительное отклонение от ожиданий, основанных на стандартном магнитном "законе Видмана-Франца". Группа учёных во главе с Киотским университетом и Институтом теоретических наук Кавли в Пекине сформулировала новый набор уравнений, которые могут предсказать эту разницу между обычными токами, переносимыми магнонами в магнитной среде. Статья «Нарушение магнонного закона Видемана-Франца в гидродинамическом режиме», опубликованная в журнале Physical Review Letters.

2023-08-19

Ученые МГУ обнаружили рекордный магнитокалорический эффект

Сотрудники кафедры магнетизма физического факультета МГУ обнаружили рекордный магнитокалорический эффект в сплаве FeRh, легированном атомами Ru, а также предложили гипотезу, объясняющую увеличение эффекта. Сплавы с магнитокалорическим эффектом могут использоваться для создания твердотельных холодильников и нового поколения жестких дисков. Работа опубликована в журнале Q1 Metallurgical and Materials Transactions A.

2023-08-17

Улавливание света внутри магнитных материалов

Новое исследование под руководством Винода М. Менона и его группы из Городского колледжа Нью-Йорка показывает, что улавливание света внутри магнитных материалов может значительно улучшить их внутренние свойства. Сильные оптические отклики магнитов важны для разработки магнитных лазеров и устройств магнитооптической памяти, а также для новых приложений квантовой трансдукции. В своей новой статье в журнале Nature Менон и его команда сообщают о свойствах слоистого магнита, содержащего сильно связанные экситоны — квазичастицы с особенно сильным оптическим взаимодействием. Из-за этого материал способен улавливать свет сам по себе.

2023-07-27

Термодинамическое объяснение эффекта инвара

В статье под названием «Термодинамическое объяснение эффекта инвара», опубликованной в журнале Nature Physics, исследователи из лаборатории Брента Фульца, профессора материаловедения и прикладной физики Барбары и Стэнли Р. Рон-младших говорят, что они вычислили и раскрыли секрет стойкости по крайней мере одного Инвара.

2023-07-26

Разработан осциллятор атомного вращения с высокой стабильностью

Исследовательская группа из Национального центра службы времени Китайской академии наук разработала гибридный высокостабильный осциллятор атомного спина на основе атомного комагнетометра Rb-Xe. Ключевым параметром, ограничивающим чувствительность сомагнитометров, является время когерентности атомного спина. Сомагнитометр работает как активные атомные часы, например, водородный мазер, образуя осциллятор вращения Rb-Xe, частота колебаний которого очень чувствительна к изменениям магнитного поля.  Исследование было опубликовано в журнале Physical Review Applied 14 июля.

2023-06-09

Обнаружены материалы с огромным магнитосопротивлением

Группа исследователей из Университета Тохоку представила новый материал, обладающий огромным магнитосопротивлением, что открывает путь к разработкам в области энергонезависимой магниторезистивной памяти (MRAM). Подробности их уникального открытия были опубликованы в Journal of Alloys and Compounds.

2023-06-02

Большое магнитосопротивление изолированных доменных стенок в нанопроволоках LSMO

Особенно интересным классом материалов являются полуметаллы, такие как LSMO, которые обладают полной спиновой поляризацией, что позволяет использовать их в устройствах спинтроники. До сих пор оставалось неизвестным сопротивление одиночной доменной стенки в полуметаллах. Теперь команда из Испании, Франции и Германии создала единую доменную стенку на нанопроводе LSMO и измерила изменения сопротивления в 20 раз больше, чем для обычного ферромагнетика, такого как кобальт. Исследование опубликовано в журнале Advanced Materials.

2023-05-25

Квантовое неупорядоченное основное состояние в магните с треугольной решеткой

Исследователи из Калифорнийского университета, Бостонского колледжа, Национальной лаборатории Ок-Риджа и Национального института стандартов и технологий недавно смогли создать квантово-неупорядоченное основное состояние в треугольном решеточном магните NaRuO2. Их результаты, опубликованные в журнале Nature Physics, предполагают, что это состояние стало возможным благодаря совместному взаимодействию между спин-орбитальной связью и корреляционными эффектами в магнитном материале.

2023-05-10

Анизотропное плавление фрустрированных антиферромагнетиков Изинга

Физики из Университета Райса и Лаборатории Эймса в Университете штата Айова обнаружили «сложенные друг на друга блины жидкого магнетизма», которые возникают в некоторых спиральных магнитах из-за изменения расположения магнитных диполей при нагревании материала. При очень низких температурах  упорядоченное расположение диполей приводит к магнетизму. При высокой температуре диполи разупорядочены и материал немагнитен. Блины жидкоподобного магнетизма возникают при промежуточной температуре, когда магнитные взаимодействия внутри горизонтальных 2D-слоев намного сильнее, чем вертикальные взаимодействия между слоями.

2023-04-18

Физики обнаружили необычные волны в магните на основе никеля

В исследовании, опубликованном в Nature Communications, физики сообщили об обнаружении необычных свойств у молибдата никеля, слоистого магнитного кристалла. Субатомные частицы, называемые электронами, напоминают крохотные магниты и ориентируются, как стрелки компаса, по отношению к магнитным полям. В экспериментах, в которых нейтроны рассеивались магнитными ионами никеля внутри кристаллов, было обнаружено, что два крайних электрона от каждого иона никеля ведут себя по-разному. Вместо того, чтобы выровнять свои спины, как стрелки компаса, они компенсировали друг друга в явлении, которое физики называют спиновым синглетом.


PhysReal • Физическая реальность

Администрация не несет ответственности за достоверность информации, опубликованной в рекламных объявлениях. Материалы, опубликованные в блогах, отражают позиции их авторов, которые могут не совпадать с мнением редакции. Использование публикаций сайта разрешается при наличии прямой ссылки на PhysReal.
Контактный E-mail:

Telegram: https://t.me/physreal
ВКонтакте: https://vk.com/physreal
RSS (XML): Новости физики

Copyright © 2024 Development by Programilla.com