2024-07-09

Запрещенное распространение гиперболических фононных поляритонов и его применение в ближнепольном переносе энергии

Авторы нового исследования предлагают стратегию управления распространением фононных поляритонов в материале Ван-дер-Ваальса (триоксид молибдена) с помощью подложки, так что направление распространения гиперболических фононных поляритонов может быть переориентировано на 90° для достижения запрещенного распространения. В то же время описывается роль зависящей от подложки связи фононных поляритонов в ближнепольном тепловом излучении и исследуется влияние корреляции между шириной воздушного зазора и толщиной пластины триоксида молибдена на лучистую теплопередачу. На основе вывода дисперсионного уравнения учёные теоретически устанавливают связь между направлением распространения гиперболических фононных поляритонов и диэлектрической проницаемостью подложки, которая показывает, что гиперболические фононные поляритоны вдоль осей x и y не могут распространяться, когда подложка отсутствует или действительная часть диэлектрической проницаемости подложки положительна.

2024-07-09

Запрещенное распространение гиперболических фононных поляритонов и его применение в ближнепольном переносе энергии

Авторы нового исследования предлагают стратегию управления распространением фононных поляритонов в материале Ван-дер-Ваальса (триоксид молибдена) с помощью подложки, так что направление распространения гиперболических фононных поляритонов может быть переориентировано на 90° для достижения запрещенного распространения. В то же время описывается роль зависящей от подложки связи фононных поляритонов в ближнепольном тепловом излучении и исследуется влияние корреляции между шириной воздушного зазора и толщиной пластины триоксида молибдена на лучистую теплопередачу. На основе вывода дисперсионного уравнения учёные теоретически устанавливают связь между направлением распространения гиперболических фононных поляритонов и диэлектрической проницаемостью подложки, которая показывает, что гиперболические фононные поляритоны вдоль осей x и y не могут распространяться, когда подложка отсутствует или действительная часть диэлектрической проницаемости подложки положительна.

2024-07-04

XX Международная научно-практическая конференция "Электронные средства и системы управления"

20 ноября 2024 г. — 22 ноября 2024 г., срок заявок: 20 сентября 2024 г. Россия, Томск (издание включено в: РИНЦ). Форма участия: очно-заочная. Язык информации: русский. Приглашаем принять участие в работе Международной научно-практической конференции «Электронные средства и системы управления». Конференция будет проходить 20-22 ноября 2024 г. К участию в работе конференции приглашаются сотрудники высших учебных заведений и научно-исследовательских институтов, в том числе аспиранты и студенты (в соавторстве со старшими коллегами), а также представители организаций и фирм, занятых в сфере наукоемкого бизнеса. Материалы докладов будут опубликованы в сборниках конференции. Сборники материалов конференции выходят после конференции и размещаются на сайте конференции в разделе «Архив». Сборникам материалов конференции присваивается ISBN. Сборники материалов конференции, включены в Российский индекс научного цитирования (РИНЦ). Лучшие доклады, отобранные программным комитетом, будут рекомендованы к публикации в журнале «Доклады Томского государственного университета систем управления и радиоэлектроники» («Доклады ТУСУР») в расширенной версии. Лучшие докладчики по итогам работы секций конференции будут награждены дипломами конференции, все очные участники конференции получат сертификаты.

2024-06-20

Генерирующее электроэнергию устройство на основе гелевого электрета для носимых датчиков

Группа исследователей из NIMS (Национального института материаловедения), Университета Хоккайдо и Фармацевтического университета Мэйдзи разработала гелевый электрет, способный стабильно удерживать большой электростатический заряд. Чтобы создать датчик, способный воспринимать низкочастотные вибрации (например, вибрации, создаваемые движением человека) и преобразовывать их в сигналы выходного напряжения, учёные объединили этот гель с очень гибкими электродами. Полученное устройство может быть использовано в качестве портативного медицинского датчика. Исследование опубликовано в журнале Angewandte Chemie International Edition. NIMS возглавляет усилия по разработке низколетучей жидкости алкил-π при комнатной температуре, состоящей из π-сопряженного красителя и гибких, но разветвленных алкильных цепей (тип углеводородного соединения). Жидкости алкил-π демонстрируют превосходные свойства сохранения заряда, могут наноситься на другие материалы (например, посредством окраски и пропитки) и легко поддаются формованию. Разработчикам удалось создать гель алкил-π, добавив небольшое количество низкомолекулярного гелеобразователя в жидкость алкил-π. Было обнаружено, что модуль упругости этого геля в 40 миллионов раз превышает модуль упругости его жидкого аналога, и его можно упростить путем фиксации и герметизации. Гель-электрет, полученный путем зарядки этого геля, достиг 24% увеличения удержания заряда по сравнению с основным материалом.

2024-06-11

Цепочка из атомов меди и углерода может оказаться тончайшей металлической проволокой

Исследователи из Лаборатории теории и моделирования материалов EPFL в Лозанне, входящей в состав NCCR MARVEL, использовали вычислительные методы, чтобы определить, какой может быть самая тонкая металлическая проволока, а также несколько других одномерных материалов со свойствами, которые могут оказаться интересными для множества приложений. По итогу было выявлено 800 одномерных материалов, из которых выбрали 14 лучших кандидатов — соединений, которые еще не были синтезированы в качестве реальных проводов. Наиболее интересными оказались четыре материала — два металла и два полуметалла. Среди них металлическая проволока CuC2, прямая цепочка, состоящая из двух атомов углерода и одного атома меди, самая тонкая металлическая нанопроволока, стабильная при 0 К, обнаруженная на сегодняшний день.

2024-05-31

Выявление трехмерного расположения полярной топологии в наночастицах

Исследовательская группа впервые экспериментально прояснила трехмерное вихревое распределение поляризации внутри сегнетоэлектрических наночастиц посредством международных совместных исследований с POSTECH, SNU, KBSI, LBNL. и Университет Арканзаса. Работа была опубликована в журнале Nature Communications под названием «Выявление трехмерного расположения полярной топологии в наночастицах». Около 20 лет назад учёные теоретически предсказали, что внутри сегнетоэлектрических наноточек может возникать уникальная форма распределения поляризации, имеющая тороидальную вихревую форму, и при должном управлении распределением вихрей можно более чем в 10 000 раз повысить плотность устройств памяти. Метод атомно-электронной томографии успешно решил задачу 20-ти летней давности. Он работает путем получения изображений наноматериалов с просвечивающим электронным микроскопом с атомным разрешением под разными углами наклона, а затем реконструирует их обратно в трехмерные структуры с использованием передовых алгоритмов реконструкции.

2024-05-29

Новое устройство точно контролирует излучение фотонов для более эффективных портативных экранов

Недавно группа химиков, математиков, физиков и наноинженеров из Университета Твенте в Нидерландах разработала устройство, позволяющее контролировать излучение фотонов с беспрецедентной точностью. Эта технология может привести к созданию более эффективных миниатюрных источников света, чувствительных датчиков и стабильных квантовых битов для квантовых вычислений. Используя полимерные щётки (крошечные химические цепочки, способные удерживать источники фотонов в определенном месте) и добавив нанофотонные инструменты, эксперимент показал, что возбужденные источники света подавляются почти в 50 раз. В этой ситуации источник света остается возбужденным в 50 раз дольше, чем обычно. Спектр очень хорошо соответствует теоретическому, рассчитанному с помощью современных математических инструментов.

2024-05-19

Международная конференция "Наноуглерод и Алмаз" НиА-2024

Приглашение на Международную конференцию «Наноуглерод и Алмаз» (НиА’2024) — площадку обмена информацией о последних достижениях в области создания, исследования и применения углеродных наноструктур и алмазов. Конференция пройдёт 1 — 5 июля 2024 года в Санкт-Петербурге. В рамках конференции НиА’2024 пройдет однодневная (3 июля 2024 года) Школа-конференция молодых учёных «Наноуглерод и Алмаз. Получение, свойства, применения и методы диагностики». Рабочий язык Конференции и Школы — русский. Доклады и сообщения, включенные в программу конференции, будут распределены по следующим тематическим секциям: алмазы; углеродные нанотрубки; графен и его производные; углеродные наноструктуры и фуллерены; применения углеродных наноструктур и алмазов.

2024-05-16

Благодаря слою золота удалось совершить прорыв в повышении четкости и обработке рентгеновских изображений

Исследователи под руководством Наньянского технологического университета в Сингапуре (NTU Singapore) и Польского центра развития технологий PORT Польского центра исследований имени Лукасевича обнаружили, что добавление золотого слоя к сверкающим материалам делает видимый свет, который они излучают, на 120% ярче. Как показали данные исследования, опубликованные в Advanced Materials, в среднем интенсивность излучаемого света составляла около 88 фотонов на килоэлектронвольт. В результате получаемые рентгеновские изображения в целом стали на 38% резче, а способность различать различные части изображений улучшилась на 182%. Благодаря слою золота время, необходимое сцинтилляционным материалам для прекращения излучения света после поглощения рентгеновских лучей, также сократилось в среднем на 1,3 наносекунды, или почти на 38%, что означает, что они были готовы к следующему раунду облучения быстрее. Это предполагает потенциал золота для ускорения обработки рентгеновских снимков.

2024-04-16

Квантовая электроника показала, что заряд в двухслойном графене распространяется как свет

Международная исследовательская группа под руководством Гёттингенского университета экспериментально продемонстрировала, что электроны в встречающемся в природе двухслойном графене движутся как частицы без какой-либо массы, точно так же, как распространяется свет. Более того, они показали, что ток можно «включать» и выключать, что имеет потенциал для разработки крошечных энергоэффективных транзисторов — таких как выключатель света в доме, но на наноуровне. Это свойство быстро движущихся электронов было теоретически предсказано еще в 2009 году, но учёным потребовалось значительно улучшить качество образцов. Результаты были опубликованы в журнале Nature Communications.


PhysReal • Физическая реальность

Администрация не несет ответственности за достоверность информации, опубликованной в рекламных объявлениях. Материалы, опубликованные в блогах, отражают позиции их авторов, которые могут не совпадать с мнением редакции. Использование публикаций сайта разрешается при наличии прямой ссылки на PhysReal.
Контактный E-mail:

Telegram: https://t.me/physreal
ВКонтакте: https://vk.com/physreal
RSS (XML): Новости физики

Copyright © 2024 Development by Programilla.com