2022-09-29

Новая технология позволяет формировать электронные пучки

Новый метод, сочетающий в себе электронную микроскопию и лазерную технологию, позволяет программировать произвольную форму электронных пучков. Его потенциально можно использовать для оптимизации электронной оптики и адаптивной электронной микроскопии, максимизируя чувствительность и сводя к минимуму повреждения, вызванные лучом. Эта фундаментальная и прорывная технология была продемонстрирована исследователями из Венского и Зигенского университетов. Результаты опубликованы в Physical Review X.

2022-09-15

Ученые превращают нанопровод с экзотическими токами в зонд для изучения магнетизма

Недавно группа исследователей IQUIST из Университета Иллинойса в Урбане-Шампейне добавила изюминку в свою СТМ, заменив наконечник нанопроволокой, сделанной из экзотического материала, гексаборида самария (SmB6). Они используют нанопроволоку для изображения магнитных элементов в подходе, который имеет потенциальные преимущества по сравнению с другими методами. Как было опубликовано в выпуске журнала Science от 9 сентября, их совместные измерения и расчеты свидетельствовали о необычной природе самой нанопроволоки.

2022-09-13

Высокопроизводительный лазер с длиной волны 937 нм позволяет ученым видеть глубже при меньшей мощности

Недавно, как сообщается в Advanced Photonics Nexus, исследователи из Omega Group Кеннета Вонга в Университете Гонконга (HKU) разработали высокопроизводительный лазер в качестве нового источника света для многофотонной микроскопии. Они сообщили о 937-нм лазере, частота которого удвоена по сравнению с полностью волоконным лазером с синхронизацией мод на 1,8 мкм, с низкой частотой повторения ~ 9 МГц и высоким SNR 74 дБ.

2022-09-07

Разработана сканирующая туннельная микроскопия с более высокой частотой кадров

Ученые с факультета прикладных наук Университета Цукубы создали «моментальные снимки» с помощью сканирующей туннельной микроскопии (СТМ) с задержкой между кадрами, намного меньшей, чем это было возможно ранее. Используя сверхбыстрые лазерные методы, они улучшили временное разрешение с пикосекунд до десятков фемтосекунд, что может значительно повысить способность ученых, занимающихся изучением конденсированных сред, изучать чрезвычайно быстрые процессы. Исследование опубликовано в ACS Photonics.

2022-08-17

Физики повышают чувствительность и скорость метода рамановской микроскопии

В журнале Optics Express исследователи описывают свою новую методику, основанную на микроскопии когерентного антистоксового комбинационного рассеяния (CARS). Микроскопия CARS создает изображения на основе колебательных сигнатур молекул, используя взаимодействие между ультракороткими лазерными импульсами и биологическими образцами. Новый подход обеспечивает доступ к трудно обнаруживаемой области колебательного спектра, известной как область отпечатков пальцев, которая охватывает диапазон от 400 до 1800 см-1. Хотя многие отдельные соединения могут быть идентифицированы по их колебательным отпечаткам пальцев в этой области, они имеют тенденцию производить слабые сигналы, которые трудно обнаружить.

2022-08-03

Исследования новых материалов показывают трансформации на атомном уровне

В новом исследовании, опубликованном в журнале Nature, под руководством профессора Гуанвэнь Чжоу из Колледжа инженерии и прикладных наук Томаса Дж. Уотсона, факультета машиностроения и программы материаловедения Бингемтонского университета, используется просвечивающая электронная микроскопия (ПЭМ), чтобы заглянуть в превращение металла в металл на атомарном уровне. Особый интерес представляют дислокации несоответствия, которые всегда присутствуют на границах раздела в многофазных материалах и играют ключевую роль в определении структурных и функциональных свойств.

2022-07-26

Новые зонды для трехмерной атомно-силовой микроскопии

Группа исследователей из Лаборатории передовых микрофлюидов и микроустройств Нью-Йоркского университета в Абу-Даби (AMMLab) разработала новый тип зондов для атомно-силовой микроскопии (АСМ) в настоящих трехмерных формах, которые они называют 3DTIP. Технология АСМ позволяет ученым наблюдать, измерять и манипулировать образцами, микро- и нанообъектами с беспрецедентной точностью.

2022-06-07

Исследование электронов с помощью традиционного сканирующего микроскопа

Физики из Университета Фридриха-Александра в Эрлангене-Нюрнберге (FAU) разработали структуру, которая позволяет ученым наблюдать взаимодействие между светом и электронами с помощью традиционного сканирующего электронного микроскопа. Процедура значительно дешевле, чем технология, которая использовалась до сих пор, а также позволяет проводить более широкий спектр экспериментов. Исследователи опубликовали свои выводы в журнале Physical Review Letters.

2022-05-13

Терагерцовая микроскопия ближнего поля на основе воздушно-плазменной динамической апертуры

В новой статье, опубликованной в журнале Light: Science & Applications, группа ученых во главе с профессорами Синь-ке Ван и Ян Чжан из Пекинской ключевой лаборатории метаматериалов и устройств, ключевой лаборатории терагерцовой оптоэлектроники Министерства образования, факультета физики, столицы Нормальный университет, Пекин, Китай, и его коллеги разработали новую микроскопию ближнего поля ТГц для получения изображений в субволновом диапазоне ТГц без приближения к образцу с помощью каких-либо устройств.

2022-04-21

Исследователи демонстрируют микроскопию сверхвысокого разрешения без меток

Исследователи разработали новый подход к измерению и визуализации, который может разрешать наноструктуры размером меньше дифракционного предела света без использования каких-либо красителей или меток. Работа представляет собой важный шаг вперед к новому и мощному методу микроскопии, который однажды можно будет использовать для того, чтобы увидеть мелкие детали сложных образцов, выходящие за рамки того, что возможно с помощью обычных микроскопов и методов.


PhysReal • Физическая реальность

Администрация не несет ответственности за достоверность информации, опубликованной в рекламных объявлениях. Материалы, опубликованные в блогах, отражают позиции их авторов, которые могут не совпадать с мнением редакции. Использование публикаций сайта разрешается при наличии прямой ссылки на PhysReal.
Контактный E-mail:

Telegram: https://t.me/physreal
ВКонтакте: https://vk.com/physreal
RSS (XML): Новости физики

Copyright © 2024 Development by Programilla.com